Rust-Powered Data
Engineering: Building
Performance-Critical Systems
for Global Impact

Presented by Ritesh Kumar Sinha

JNTU India

The Data Engineering Challenge

The global data sphere is exploding at an unprecedented rate:

Processing over 175 zettabytes of data annually " e | ' P —
Critical need for systems that are both and inherently secure : e
N : - v /’
e Traditional tools struggle with modern performance demands
a .

e Data integrity and memory safety becoming paramount concerns — . ,

J \. .. % 1

" : \. ._..'.I"..HIH,

Modern data engineering requires a fundamental rethinking of our tooling to handle tomorrow's scale while maintaining the highest

standards of safety.

Why Rust for Data Engineering?

Memory Safety Zero-Cost Abstractions

Ownership model prevents data corruption and security High-level programming with no performance penalty, critical
vulnerabilities without runtime overhead for processing petabytes efficiently

Concurrency Without Fear Performance Predictability

Compiler enforces thread safety, eliminating entire classes of No garbage collection pauses, predictable memory usage, and
race conditions and deadlocks bare-metal speed

Rust uniquely combines the performance of C/C++ with modern safety guarantees, making it ideal for performance-critical data systems.

Real-World Impact: Benchmarks

110)4 99.99% 80% 60 %

Throughput Improvement System Uptime Latency Reduction Computational Savings
Memory-safe data pipelines Edge computing solutions for Zero-copy serialization
Stream processing systems built handling petabyte-scale real-time analytics in resource- techniques reducing overhead in
in Rust outperforming JVM- workloads with exceptional constrained environments data transfer operations
based alternatives reliability

These aren't theoretical improvements - they represent transformative performance gains in production systems processing billions of

records daily.

>

The Rust Data Engineering
Ecosystem

1

P Se—y——

Blatsrrernt Dassietuler

Tokio Apache Arrow
' Asynchronous runtime providing Rust implementation enabling
¥ i O & the foundation for high- lightning-fast columnar data
._7.::-" ' ‘ performance I/O operations processing and interoperability
Bneggj & 1
,,:,?w é;:-_:f
| DataFusion

Query execution framework delivering exceptional performance for

analytical workloads

These core components form the backbone of Rust's emerging data engineering

stack, with new tools constantly expanding the ecosystem.

Case Study: Climate Monitoring Systems

Challenge

o Processing terabytes of satellite imagery daily
. Need for real-time analysis in remote locations

e High reliability requirements with limited infrastructure

Rust Solution

o« Memory-efficient image processing pipelines
e Edge deployment with minimal hardware requirements

e Guaranteed execution without unexpected failures

Results: 65% reduction in nrocessing time 40% lower infrastructure costs and

Case Study: Public Health Systems

<@} Challenge
\ . Processing sensitive health data at national scale

* Need for real-time epidemic tracking capabilities

\ s e Zero tolerance for data corruption or leakage

Moo - . . .
T —— e o 3 Rust Solution

. * — — Epl.dcnm;.; Ui\c‘l‘n ";;‘,;:., : b <ak —_— e

N I~] =8 S . . Memory-safe data pipelines preventing unauthorized access

- es— T e Compile-time verification of privacy boundaries
i e /‘ VNN NA VA e Comilt « High-throughput query engines for immediate insights
Po—ry <) &s N, A ' ‘i{,
— — —r y -
- BB o8 M- P
- t = 8

LU ond W W 0 S 40 PO P s rrm—— s

o e 30w Deed

]
¥
)
i
i
i

iHnm

Tt
\

Results: 8ms resnonse time for comblex aueries across billions of records zero reported

Deep Dive: Leveraging Rust's Ownership Model

Prevent Data Corruption

Ownership and borrowing rules ensure
that data is never accidentally modified

by multiple parties simultaneously

Clear Boundaries

Explicit ownership makes data flow
transparent throughout the system,

improving maintainability

/>

Memory Safety

Eliminate use-after-free, double-free, and
buffer overflow vulnerabilities that plague

C/C++ systems

Zero Runtime Cost

Safety checks happen at compile time,
with no performance penalty during

execution

The ownership model is Rust's secret weapon for data engineering - it creates systems that are both blazingly fast and inherently immune

to entire categories of bugs.

Technical Implementation: Stream Processing

(@) i3 S

Source Connectors Transformation Engine Data Sink
Zero-copy parsing of incoming data streams Lock-free parallel processing with compile-time Efficient serialization and persistence with
using Rust's efficient I/O abstractions guarantees against data races memory safety guarantees

use tokio::io::{AsyncBufReadExt};async
fn process_stream(reader: &mut R,)
-> Result<(), Error> { let mut
buffer = String::new(); while
reader.read_line(&mut buffer).await? >
0 { // Zero-copy processing
process_data(&buffer);

buffer.clear(); } ok(())}

(] (] (]
Technical Implementation: Apache Arrow Integration
use arrow::array::{Int32Array, Float64Array};use arrow::record_batch::RecordBatch;fn |J\a I \\ 2 "f // l IA'
process_columnar_data() -> Result { // Create columnar arrays with zero-copy views p \ 4 - y
let id_array = Int32Array::from(vec![1, 2, 3, 4, 5]); let value_array = ;
Float64Array: : from(vec![10.0, 20.0, 30.0, 40.0, 50.0])15 // Create a “ ' '\ l‘ I' ”

record batch let batch = RecordBatch::try new(Schema: :new(vec! [N

|
: | J\ VYo' L
Field::new("id", DataType::Int32, false), Field: :new("value", " \‘ . , ' ”
s‘\'a - vt
I‘g

Arc::new(value_array), 1,)?; Ok (batch)} } AN ﬁ ;r EELEE . LN

tir |

DataType: :Float64, false), D, vec![Arc::new(id_array),

N = 74T\ *
—— N\ —
Wi R AN\

i SURANY

A ‘“\\\\:‘u._-;’ | —

7 A 1) 111NN\

Key Benefits

Technical Implementation: Efficient Query Execution

SQL Interface

1

2 Query Planning & Optimization

3 Physical Execution Engine

4 Vectorized Processing

use datafusion::prelude::*;async fn execute_query() -> Result<()> { // Create a context let ctx = SessionContext::new(); // Register a CSV data source ctx.register_csv("sensors", "sensors.csv",
CsvReadOptions::new()).await?; // Execute a query let df = ctx.sql("SELECT location, AVG(temperature) FROM sensors WHERE timestamp > '2023-01-01' GROUP BY location HAVING COUNT(*) > 1000"

).await?; // Process the results with zero-copy operations let batches = df.collect().await?; Ok(())}

Building Ethical Data Systems with Rust

_
Privacy by Design Bias Detection Sustainability
Rust's ownership model creates natural Memory-efficient algorithms for identifying Energy-efficient processing reducing carbon
boundaries that help enforce data privacy and mitigating biases in ML data pipelines footprint while maintaining sub-millisecond
restrictions at compile time without performance compromises response times

Rust enables us to build systems that uphold ethical principles without sacrificing performance - a critical consideration for global-scale

data systems.

Actionable Techniques for Data Engineers

Implement Lock-Free Concurrent Data
Structures

Use Rust's atomic types and carefully designed data
structures to eliminate locks while maintaining

thread safety

use std::sync::atomic::{AtomicUsize,

Ordering};struct Counter { count:
AtomicUsize, }impl Counter { fn new() -
> Self { Counter { count:

AtomicUsize::new(9) } } fn
increment(&self) -> usize {

self.count.fetch_add(1, Ordering::SeqCst)
3}

y

Build High-Throughput Streaming
Applications

Leverage Tokio's async runtime combined with
Arrow for non-blocking, high-performance data

processing pipelines

3

Create Energy-Efficient Processing
Pipelines

Optimize algorithms and data structures to reduce
CPU cycles and memory usage, leading to

significant infrastructure savings

ineering

The Future of Rust in Data Eng

&

T AN L

4
. (iy
L

- AT

. o,o//o;’o

3 3\....\3 L

299 9

: \
— e

T/ LR
WA TN ,/

T
A A ; é/ ////

Growing adoption in cloud-native data infrastructure
Specialized tooling for domain-specific data challenges

Expansion of Rust-based ML and Al tooling
Integration with existing data ecosystems

Emerging Trends

