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Why We Shouldn't 
Trust Embeddings from 

Foundation Models 
without 

Experimentation and 
Evaluation



Embedding process



Number of floating-point values in each embedding vector

Typical ranges: 32-4096 dimensions (100-768 most common)

Insights: 
• Higher dimensions → better semantic capture but more computation
• Lower dimensions → faster processing but potential information loss

Selection factors: Dataset size, complexity of semantic relationships, computational 
resources

Examples: BERT-base (768 dimensions), GPT embeddings (1536 dimensions), Word2Vec 
(300 dimensions)

Important Concepts - Dimensionality



Maximum number of tokens an embedding model can process at once

Importance: Determines the context window for understanding relationships

Typical ranges: 
• Word embeddings: single tokens
• Sentence models: 128-512 tokens
• Document models: 1024-8192+ tokens

Context truncation: Longer sequences get cut off, potentially losing critical information

Computational impact: Quadratic relationship with attention-based models (O(n²))

Important Concepts – Max Sequence Length



Important Concepts – vocabulary + Size

Number of unique tokens the embedding model recognizes

Relevance: Affects tokenization granularity and out-of-vocabulary handling

Typical sizes: 30,000-50,000 tokens for language models

Trade-offs: Larger vocabularies capture more nuance but increase model size



Embeddings  - Use cases

Semantic Search 

• Finding relevant 
documents beyond 
keyword matching

• Retrieving 
information based 
on meaning rather 
than exact terms

• Powering RAG 
(Retrieval-
Augmented 
Generation) 
systems

Recommendation 
Systems 

• Product 
recommendations 
in e-commerce

• Content 
recommendations 
(articles, videos, 
music)

• "People also 
viewed" features 
based on item 
similarity

Natural Language 
Processing

• Text classification 
(sentiment 
analysis, topic 
categorization)

• Named entity 
recognition

• Question 
answering systems

Information 
Retrieval 

• Document 
clustering and 
organization

• Duplicate 
detection

• Contextual search 
filtering



Cosine Similarity

• Measures the angle 
between vectors, 
not magnitude

• Range: -1 
(opposite) to 1 
(identical)

• Advantage: 
Normalizes for 
vector length, 
focusing on 
direction

• Popular for text 
embeddings where 
magnitude is less 
important

Euclidean Distance

• Straight-line 
distance between 
points in vector 
space

• Intuitive for 
physical space 
analogies

• Works well when 
magnitude matters

• Less common for 
high-dimensional 
embeddings due to 
"curse of 
dimensionality"

Manhattan 
Distance (L1 Norm)

• Sum of absolute 
differences 
between vector 
components

• More robust to 
outliers than 
Euclidean

• Useful in grid-like 
spaces

Dot Product

• Simple 
multiplication and 
sum of 
corresponding 
values

• Not normalized, so 
sensitive to 
magnitude

• Quick computation 
but less 
interpretable

Embedding Comparisons



Find Embeddings using 
OpenAI and 
SentenceTransformers



Compare Embeddings



A small Quiz



Statement1: "The treatment was completely ineffective against the disease." 
Statement2: "The treatment was absolutely effective against the disease."

Statement 1: "Place the specimen in the refrigerator at exactly 4°C." 
Statement 2: "The sample must be stored at precisely 4 degrees Celsius in the cooling unit."

Statement 1: " The results showed statistical significance" 
Statement 2: " The findings indicated a significant effect"

Statement 1: “The patient shows hypertension.”
Statement 2: " The patient shows hypotension."



• Many embedding models, especially earlier ones, are influenced by bag-of-
words approaches where word presence matters more than word order or 
negations.

Bag-of-words 
influence: 

• Both sentences share almost all their tokens ("the", "movie", "was", "good", 
"and", "I", "enjoyed", "it") - only differing by the word "not".Shared vocabulary: 

• The overall context of both sentences is about movie watching and enjoyment.
Contextual 
similarities: 

• Both sentences contain the positive sentiment word "enjoyed" which 
contributes strongly to the vector representation.Positivity bias: 

• Embedding models often struggle with negations ("not good") because 
negation fundamentally changes meaning while only adding/changing minimal 
text.

Negation handling 
weakness: 

Why is this happening???



Scenario’s



1. Capitalization      2. Whitespace variations      3. Negations      4. Special characters     5. Word order 
6. Synonyms and paraphrasing       7. Spelling errors and typos       8. Named entity variations 
9. Grammatical variations       10. Fille ar words and verbosity      11. Contractions and expansions 
12. Named entity variations      13. Missing information      14. Grammatical variations    15. Language 
mixing and code-switching      16. temporal_direction 17. quant_threshold 18. hypo_fact
19. scaler_inversion 20. medicine_domain_based 21. legal_domain_based 22. attribution 
23. unit of time      24. unit_conversion 25. speed and miles         26. exact vs range 
27. domain_significance 28. Percentages         29. Date and time        30. statistics   31. Counterfactual 
32. Taxonomic 33. Procedural 34. Comparison 35. Metaphorical 36. Presupposition 37. References 
38. Extensional



Solutions



1. There is not one solution, and these solutions can be combined or used in isolation

2. Use a Model that is based on your domain i.e. use domain specific model

3. Use preprocessing steps on your data to add additional context.
1. Add entity type along with entity i.e., Add Brand or Fruit along with Apple depending on 

context
2. Check for abbreviations
3. Expand numbers into words
4. Expand date-time into sentences

4. Fine-tune an existing foundation model

Solution



Fine-tuning



Set up the 
environment

Preparing 
training, 

validation and 
test data for 
fine-tuning 

model

Pick a base 
model to fine-

tune from 
huggingface

Provide 
configuration 

and hyper-
parameters for 
fine-tuning the 

model

Train the model 
and save it

Evaluate the 
model and 

compare with 
base model

Steps for fine-tuning



Choose a Model
Domain alignment: Choose a base model that's conceptually close to your target 
domain. For medical text, clinical BERT variants may perform better than general models.

Size vs. performance trade-off: Larger models generally perform better but require more 
compute resources for fine-tuning and deployment.

Inference speed requirements: If you need real-time embeddings in production, a 
smaller model might be preferable despite slightly lower quality.

Training stability: Some models fine-tune more reliably than others. Models from the 
sentence-transformers library are specifically designed for fine-tuning.

Community support: Models with active maintenance and large user bases tend to have 
better documentation and fewer unexpected behaviors.



Model Size Strengths Best for

sentence-transformers/all-MiniLM-L6-
v2 80MB Fast, compact, good general 

performance
Resource-constrained environments, 
mobile applications

sentence-transformers/all-mpnet-base-
v2 420MB Excellent general performance, handles 

longer text
General-purpose embeddings with 
good quality-speed tradeoff

sentence-transformers/multi-qa-
mpnet-base-dot-v1 420MB Optimized for retrieval, handles 

questions and answers RAG systems, Q&A applications

intfloat/e5-large-v2 1.3GB State-of-the-art performance, rich 
semantic understanding When quality is the top priority

BAAI/bge-large-en-v1.5 1.3GB Strong on retrieval benchmarks, works 
well with Chinese and English

Multilingual applications, search 
systems

Choose a Model



• train_objectives
• evaluator
• epochs
• warmup_steps
• optimizer_params: learning rate and weight decay.
• scheduler
• output_path
• evaluation_steps
• save_best_model
• use_amp
• checkpoint_path
• checkpoint_save_steps
• checkpoint_save_total_limit
• show_progress_bar

Important hyper 
parameters to tune for 
effective fine-tuning

Helps avoid over-fitting 
and under-fitting

Configuration



know your 
data well

Identify the 
model to 

use

Embedding 
models 
aren't 
magic

Data 
quality 
trumps 

quantity

fine-tune if 
it is 

required

Systematic 
evaluation 

is 
essential -

Fine-tuning 
is iterative.

Key Takeaways



Questions

https://www.linkedin.com/in/ritesh-modi

https://github.com/ritesh-modi

https://www.x.com/automationnext

https://www.linkedin.com/in/ritesh-modi/
https://github.com/ritesh-modi
https://x.com/automationnext
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