
Removing hallucinations –
embeddings perspective

Ritesh Modi
Principal Engineer, Microsoft

Why We Shouldn't
Trust Embeddings from

Foundation Models
without

Experimentation and
Evaluation

Embedding process

Number of floating-point values in each embedding vector

Typical ranges: 32-4096 dimensions (100-768 most common)

Insights:
• Higher dimensions → better semantic capture but more computation
• Lower dimensions → faster processing but potential information loss

Selection factors: Dataset size, complexity of semantic relationships, computational
resources

Examples: BERT-base (768 dimensions), GPT embeddings (1536 dimensions), Word2Vec
(300 dimensions)

Important Concepts - Dimensionality

Maximum number of tokens an embedding model can process at once

Importance: Determines the context window for understanding relationships

Typical ranges:
• Word embeddings: single tokens
• Sentence models: 128-512 tokens
• Document models: 1024-8192+ tokens

Context truncation: Longer sequences get cut off, potentially losing critical information

Computational impact: Quadratic relationship with attention-based models (O(n²))

Important Concepts – Max Sequence Length

Important Concepts – vocabulary + Size

Number of unique tokens the embedding model recognizes

Relevance: Affects tokenization granularity and out-of-vocabulary handling

Typical sizes: 30,000-50,000 tokens for language models

Trade-offs: Larger vocabularies capture more nuance but increase model size

Embeddings - Use cases

Semantic Search

• Finding relevant
documents beyond
keyword matching

• Retrieving
information based
on meaning rather
than exact terms

• Powering RAG
(Retrieval-
Augmented
Generation)
systems

Recommendation
Systems

• Product
recommendations
in e-commerce

• Content
recommendations
(articles, videos,
music)

• "People also
viewed" features
based on item
similarity

Natural Language
Processing

• Text classification
(sentiment
analysis, topic
categorization)

• Named entity
recognition

• Question
answering systems

Information
Retrieval

• Document
clustering and
organization

• Duplicate
detection

• Contextual search
filtering

Cosine Similarity

• Measures the angle
between vectors,
not magnitude

• Range: -1
(opposite) to 1
(identical)

• Advantage:
Normalizes for
vector length,
focusing on
direction

• Popular for text
embeddings where
magnitude is less
important

Euclidean Distance

• Straight-line
distance between
points in vector
space

• Intuitive for
physical space
analogies

• Works well when
magnitude matters

• Less common for
high-dimensional
embeddings due to
"curse of
dimensionality"

Manhattan
Distance (L1 Norm)

• Sum of absolute
differences
between vector
components

• More robust to
outliers than
Euclidean

• Useful in grid-like
spaces

Dot Product

• Simple
multiplication and
sum of
corresponding
values

• Not normalized, so
sensitive to
magnitude

• Quick computation
but less
interpretable

Embedding Comparisons

Find Embeddings using
OpenAI and
SentenceTransformers

Compare Embeddings

A small Quiz

Statement1: "The treatment was completely ineffective against the disease."
Statement2: "The treatment was absolutely effective against the disease."

Statement 1: "Place the specimen in the refrigerator at exactly 4°C."
Statement 2: "The sample must be stored at precisely 4 degrees Celsius in the cooling unit."

Statement 1: " The results showed statistical significance"
Statement 2: " The findings indicated a significant effect"

Statement 1: “The patient shows hypertension.”
Statement 2: " The patient shows hypotension."

• Many embedding models, especially earlier ones, are influenced by bag-of-
words approaches where word presence matters more than word order or
negations.

Bag-of-words
influence:

• Both sentences share almost all their tokens ("the", "movie", "was", "good",
"and", "I", "enjoyed", "it") - only differing by the word "not".Shared vocabulary:

• The overall context of both sentences is about movie watching and enjoyment.
Contextual
similarities:

• Both sentences contain the positive sentiment word "enjoyed" which
contributes strongly to the vector representation.Positivity bias:

• Embedding models often struggle with negations ("not good") because
negation fundamentally changes meaning while only adding/changing minimal
text.

Negation handling
weakness:

Why is this happening???

Scenario’s

1. Capitalization 2. Whitespace variations 3. Negations 4. Special characters 5. Word order
6. Synonyms and paraphrasing 7. Spelling errors and typos 8. Named entity variations
9. Grammatical variations 10. Fille ar words and verbosity 11. Contractions and expansions
12. Named entity variations 13. Missing information 14. Grammatical variations 15. Language
mixing and code-switching 16. temporal_direction 17. quant_threshold 18. hypo_fact
19. scaler_inversion 20. medicine_domain_based 21. legal_domain_based 22. attribution
23. unit of time 24. unit_conversion 25. speed and miles 26. exact vs range
27. domain_significance 28. Percentages 29. Date and time 30. statistics 31. Counterfactual
32. Taxonomic 33. Procedural 34. Comparison 35. Metaphorical 36. Presupposition 37. References
38. Extensional

Solutions

1. There is not one solution, and these solutions can be combined or used in isolation

2. Use a Model that is based on your domain i.e. use domain specific model

3. Use preprocessing steps on your data to add additional context.
1. Add entity type along with entity i.e., Add Brand or Fruit along with Apple depending on

context
2. Check for abbreviations
3. Expand numbers into words
4. Expand date-time into sentences

4. Fine-tune an existing foundation model

Solution

Fine-tuning

Set up the
environment

Preparing
training,

validation and
test data for
fine-tuning

model

Pick a base
model to fine-

tune from
huggingface

Provide
configuration

and hyper-
parameters for
fine-tuning the

model

Train the model
and save it

Evaluate the
model and

compare with
base model

Steps for fine-tuning

Choose a Model
Domain alignment: Choose a base model that's conceptually close to your target
domain. For medical text, clinical BERT variants may perform better than general models.

Size vs. performance trade-off: Larger models generally perform better but require more
compute resources for fine-tuning and deployment.

Inference speed requirements: If you need real-time embeddings in production, a
smaller model might be preferable despite slightly lower quality.

Training stability: Some models fine-tune more reliably than others. Models from the
sentence-transformers library are specifically designed for fine-tuning.

Community support: Models with active maintenance and large user bases tend to have
better documentation and fewer unexpected behaviors.

Model Size Strengths Best for

sentence-transformers/all-MiniLM-L6-
v2 80MB Fast, compact, good general

performance
Resource-constrained environments,
mobile applications

sentence-transformers/all-mpnet-base-
v2 420MB Excellent general performance, handles

longer text
General-purpose embeddings with
good quality-speed tradeoff

sentence-transformers/multi-qa-
mpnet-base-dot-v1 420MB Optimized for retrieval, handles

questions and answers RAG systems, Q&A applications

intfloat/e5-large-v2 1.3GB State-of-the-art performance, rich
semantic understanding When quality is the top priority

BAAI/bge-large-en-v1.5 1.3GB Strong on retrieval benchmarks, works
well with Chinese and English

Multilingual applications, search
systems

Choose a Model

• train_objectives
• evaluator
• epochs
• warmup_steps
• optimizer_params: learning rate and weight decay.
• scheduler
• output_path
• evaluation_steps
• save_best_model
• use_amp
• checkpoint_path
• checkpoint_save_steps
• checkpoint_save_total_limit
• show_progress_bar

Important hyper
parameters to tune for
effective fine-tuning

Helps avoid over-fitting
and under-fitting

Configuration

know your
data well

Identify the
model to

use

Embedding
models
aren't
magic

Data
quality
trumps

quantity

fine-tune if
it is

required

Systematic
evaluation

is
essential -

Fine-tuning
is iterative.

Key Takeaways

Questions

https://www.linkedin.com/in/ritesh-modi

https://github.com/ritesh-modi

https://www.x.com/automationnext

https://www.linkedin.com/in/ritesh-modi/
https://github.com/ritesh-modi
https://x.com/automationnext

	Slide 1: Removing hallucinations – embeddings perspective
	Slide 2
	Slide 3
	Slide 4: Embedding process
	Slide 5: Important Concepts - Dimensionality
	Slide 6: Important Concepts – Max Sequence Length
	Slide 7: Important Concepts – vocabulary + Size
	Slide 8: Embeddings - Use cases
	Slide 9: Embedding Comparisons
	Slide 10: Find Embeddings using OpenAI and SentenceTransformers
	Slide 11: Compare Embeddings
	Slide 12: A small Quiz
	Slide 13
	Slide 14: Why is this happening???
	Slide 15: Scenario’s
	Slide 16
	Slide 17: Solutions
	Slide 18: Solution
	Slide 19: Fine-tuning
	Slide 20: Steps for fine-tuning
	Slide 21: Choose a Model
	Slide 22: Choose a Model
	Slide 23: Configuration
	Slide 24: Key Takeaways
	Slide 25: Questions

