Kubernetes Operators

A deep dive into K8 native workload management

Kubernetes Architecture The Controlplane:

i e APl Server
API server
f\ Cloud = e Controller Manager
& e Scheduler
\ e ETCDKV Store
' e e Cloud Controller Manager
.:E Node Node Node (P‘v’fS‘S‘E"CQS“"e)Elcu
/ l o O The Dataplane (nodes):
: 5} (&) ()
Kube-prony e Kubelet (node agent)
e %) © _— e Kube Proxy (IPTables or IV mode)
Control Plane k-proxy, R k-proxy, K-proxy,

Source: https://kubernetes.io/docs/concepts/overview/components

https://kubernetes.io/docs/concepts/overview/components/

Foundation: Understanding the ‘Control Loop’

Control loops are implemented by the controller and it’s responsibility is to ‘watch’ the state of the
cluster (Kubernetes API objects) and make or request a change so as to bring the ‘observed’ state closer

to the ‘desired’ state defined

[Kubernetes official documentation: https://kubernetes.io/docs/reference/glossary/]

https://kubernetes.io/docs/reference/glossary/

‘Control Loop' in Kubernetes

H b=

Read the state of the resources (using events streamed over watches)
Change or request a change in state for the resource
Update the status of the resource to the API Server
Repeat
Periodic
reconcile
StaFe che_mge l Make the cluster
Resource with notification _| Controller (with state as requested | State Observedin
desired state "] continuous loops) g the cluster
State updates

S 2

Continuous
loop

Reference reading: Programming
Kubernetes from O'Reilly

https://www.oreilly.com/library/view/programming-kubernetes/9781492047094/
https://www.oreilly.com/library/view/programming-kubernetes/9781492047094/

Building Blocks of a Control Loop

A Kubernetes Controller/Control Loop has 3 fundamental building blocks:

a. Thelnformer: Watches the desired state, implements resync and reconciliation
b. The Work Queue: Queuing the state changes, implement retries if needed
c. TheEvents*: The state changes (add/update/delete) itself

*Events here do not refer to the Event API, which are ephemeral resources stored in ETCD (upto an hour) and
purged later, these objects merely act as a user friendly logs and are often created by other controllers [kubectl

get events -n my-namespace]

Kubernetes Event Reference

N R \

H
b i

A

i

sorse |D-¢¢mccm| | rsicssacaoe | l sowaio | [e

Created: Deployment

Create ReplicaSet

Created: Replicaset

Created: Binding

Greate Container

Updated: Container

Update
Container

Updated: Pod

Update RepicaSet

Updated: RepiicasSet

Source. Refer to Andrew Chen'’s & Dominik Tornow'’s blog

Kubernetes control plane employes events & a
loosely coupled architecture over RPC calls,
controllers watches the changes & executes the
business logic inside it

The diagram on the left shows what happens when
a pod is launched through a deployment in
Kubernetes

A number of controllers communicating over
events while for an end user it’s something as
simple as kubectl| create deployment command!

https://dominik-tornow.medium.com/the-mechanics-of-kubernetes-ac8112eaa302

Uncovering the Go Code

What’s going on here?

e Calculate the diff i.e; current state (pods) vs what’s in the spec
e Thenif diff < O (less than needed) ~ Create new pods
e Butifdiff >0 (more than needed) ~ Delete some pods

Under the hoods it does more intelligent work like picking pods to
delete and all but those are the implementation details, however
message is clear enough..”"match the desired state to observed state”

[Kubernetes source code on GitHub :
https://qgithub.com/kubernetes/kubernetes/blob/master/pkg/controller/replicaset/replica_set.go#

L565

https://github.com/kubernetes/kubernetes/blob/master/pkg/controller/replicaset/replica_set.go#L565
https://github.com/kubernetes/kubernetes/blob/master/pkg/controller/replicaset/replica_set.go#L565

2

Optimistic Concurrency

Kubernetes uses optimistic concurrency to carry out concurrent operations without locking

APl server detects concurrent writes and rejects the latter of the two operations

API Client’s responsibility is to handle this and probably retry the operation

The client code provided by the API machinery libs use resource versions to determine if another
process in the cluster updated the resource before client.Update() was called by the controller

Detecting changes : https://kubernetes.io/docs/reference/using-api/api-concepts/#efficient-detection-of-changes

https://kubernetes.io/docs/reference/using-api/api-concepts/#efficient-detection-of-changes

2

Operators: Control Loops & Operational Intelligence

e Operators were first introduced by CoreOS in 2016

e Inspired by how DevOps engineers used their ‘domain’ knowledge to run software in production

e Operator is a“workload” specific control loop which embodies the operational knowledge needed
to run workloads reliably in production

e Attheveryfoundation of any operator, resides Kubernetes resources & controllers but it’s value is
enhanced through ‘workload aware’ automation

Introducing Operators a blog from 2016 by CoreOS :
https://www.redhat.com/en/blog/introducing-operators-putting-operational-knowledge-into-software

http://www.redhat.com/en/blog/introducing-operators-putting-operational-knowledge-into-software

2

Operators: The Building Blocks

e Kubernetes API extensions (A.K.A Custom Resources)
e Custom controllers

Reference : https://kubernetes.io/docs/reference/using-api/api-concepts/

https://kubernetes.io/docs/reference/using-api/api-concepts/

2

Quick Introduction: Custom Resources

Available since Kubernetes 1.7

Serves a way to extend Kubernetes APl and declare a custom objects

Custom Resources also serves as abstraction to hide lower level Kubernetes details
Used in the cloud native landscape to provide a “Kubernetes-first” experience

Istio, Linkerd, Flux, Argo and many other CNCF hosted projects use Custom Resources

2

Quick Introduction: Custom Resource Definition

e CRDsform the base for creating CRs, that is Custom Resources

e It'san APl natively available in Kubernetes to help you define the anatomy of your Custom
Resource

e Whenit comes to persisting & serving your CRs defined via CRDs, API server makes no distinction
State of a Custom Resource is also persisted in ETCD alongside the state of native Kubernetes
resources like a Deployment or a Service

e Asaprovider of the CR, you can control versioning & also instruct API server to do conversions
between the versions when a CR is requested (e.g. moving from vlbetal to v1)

Reference : https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/

Example: CRD & Custom Resource

apiVersion: apiextensions.k8s.io/vi
kind: CustomResourceDefinition
metadata:

name must match the spec fields below, and be in the form: <plural>.<group>
name: crontabs.stable.exanple.con
spec:

apiversion:
group name to use for REST API: /apis/<group>/<version>
group: stable.example.com

"stable.example.com/v1i"
kind: CronTab

list of versions supported by this CustomResourceDefinition
versions:

metadata:
> name: my-new-cron-object
- name: v1i

spec:
Each version can be enabled/disabled by Served flag
served: true

cronspec:i "t * £ & fy5a

image: my-awesome-cron-image
one and only one version must be marked as the storage version

storage: true
schema:
openAPIV3Schema:
type: object
properties:
spec:
type: object
properties

What this may look like:
cronspec
type: string
type: string
replicas
type: integer
either Namespaced or Cluster
scope: Namespaced

Define the CR using the CRD

Apply the CRD to the cluster
Create a CR manifest

. Apply the CR to the cluster

- ot

plural name to be used in the URL: /apis/<group>/<version>/<plural>
plural: crontabs

singular name to be used as an alias on the CLI and for display
singular: crontab

HWN R

Reference : https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#create-a-customresourcedefinition

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#create-a-customresourcedefinition

2

What's Next?

e Define a Custom Resource Definition (CRD) and create a Custom Resource following the schema
provided by the CRD

e But Kubernetes as such does not know what to do with it

e That’s where Custom Controllers come in

e Operator SDK (part of the Operator Framework) offers an easy way to bootstrap Custom
Controllers & deploy to your Kubernetes cluster

2

Kubebuilder Framework

e Kubebuilder maintained by the APl Machinery SIG provides an easier and efficient way to write custom
controllers
e Kubebuilder provides Go modules/packages to help you simplify the operator development:
o Manager
m Client
m Cache
o Controller
m Reconciler
m Predicate
o Webhook

m Admission Request Further Reading: https:/book.kubebuilder.io/introduction
m Validator

https://book.kubebuilder.io/introduction

2

Operator SDK

Bases on Kubebuilder, CoreOS/RedHat put together the Operator Framework
Operator SDK is a part of the Operator Framework
e Operator SDK uses the Kubernetes ‘Controller-Runtime’ library to make operator development
easier, scalable, automated and more effective
o Scaffolding
Automated testing
Code generation & simple bootstrapping
Extensions
API abstraction
Supports writing operators using Ansible, Helm or Go

O O O O O

Operator Framework : https://sdk.operatorframework.io/

https://sdk.operatorframework.io/

2

Operator Initialization & Code Generation

Key Commands:

operator-sdk init --domain acme.io --repo github.com/acme/redis-operator

operator-sdk create api --group cache --version vlalpha1l --kind Redis --resource --controller
make generate

make manifests

make install run

kubectl apply -f <custom-resource-file>yaml

kubectl patch redis redis-cache -n conf42-init -p '{"spec":{"size": 4}}' --type=merge

Reference: https://sdk.operatorframework.io/docs/building-operators/golang/tutorial/

https://sdk.operatorframework.io/docs/building-operators/golang/tutorial/

