
Kubernetes Operators
A deep dive into K8 native workload management

Kubernetes Architecture

Source: https://kubernetes.io/docs/concepts/overview/components/

The Controlplane:

● API Server
● Controller Manager
● Scheduler
● ETCD KV Store
● Cloud Controller Manager

The Dataplane (nodes):

● Kubelet (node agent)
● Kube Proxy (IPTables or IV mode)

https://kubernetes.io/docs/concepts/overview/components/

Foundation: Understanding the ‘Control Loop’

Control loops are implemented by the controller and it’s responsibility is to ‘watch’ the state of the

cluster (Kubernetes API objects) and make or request a change so as to bring the ‘observed’ state closer

to the ‘desired’ state defined

[Kubernetes official documentation: https://kubernetes.io/docs/reference/glossary/]

https://kubernetes.io/docs/reference/glossary/

‘Control Loop’ in Kubernetes

1. Read the state of the resources (using events streamed over watches)

2. Change or request a change in state for the resource

3. Update the status of the resource to the API Server

4. Repeat

Resource with
desired state

Controller (with
continuous loops)

State Observed in
the cluster

State change
notification

State updates

Continuous
loop

Periodic
reconcile

Make the cluster
state as requested

Reference reading: Programming
Kubernetes from O’Reilly

https://www.oreilly.com/library/view/programming-kubernetes/9781492047094/
https://www.oreilly.com/library/view/programming-kubernetes/9781492047094/

Building Blocks of a Control Loop

A Kubernetes Controller/Control Loop has 3 fundamental building blocks:

a. The Informer : Watches the desired state, implements resync and reconciliation
b. The Work Queue: Queuing the state changes, implement retries if needed
c. The Events*: The state changes (add/update/delete) itself

*Events here do not refer to the Event API, which are ephemeral resources stored in ETCD (upto an hour) and
purged later, these objects merely act as a user friendly logs and are often created by other controllers [kubectl
get events -n my-namespace]

Kubernetes Event Reference

Source: Refer to Andrew Chen’s & Dominik Tornow’s blog

Kubernetes control plane employes events & a
loosely coupled architecture over RPC calls,
controllers watches the changes & executes the
business logic inside it

The diagram on the left shows what happens when
a pod is launched through a deployment in
Kubernetes

A number of controllers communicating over
events while for an end user it’s something as
simple as kubectl create deployment command!

https://dominik-tornow.medium.com/the-mechanics-of-kubernetes-ac8112eaa302

Uncovering the Go Code
What’s going on here?

● Calculate the diff i.e; current state (pods) vs what’s in the spec
● Then if diff < 0 (less than needed) ~ Create new pods
● But if diff > 0 (more than needed) ~ Delete some pods

Under the hoods it does more intelligent work like picking pods to
delete and all but those are the implementation details, however
message is clear enough..”match the desired state to observed state”

[Kubernetes source code on GitHub :
https://github.com/kubernetes/kubernetes/blob/master/pkg/controller/replicaset/replica_set.go#
L565]

https://github.com/kubernetes/kubernetes/blob/master/pkg/controller/replicaset/replica_set.go#L565
https://github.com/kubernetes/kubernetes/blob/master/pkg/controller/replicaset/replica_set.go#L565

Optimistic Concurrency

● Kubernetes uses optimistic concurrency to carry out concurrent operations without locking

● API server detects concurrent writes and rejects the latter of the two operations

● API Client’s responsibility is to handle this and probably retry the operation

● The client code provided by the API machinery libs use resource versions to determine if another

process in the cluster updated the resource before client.Update() was called by the controller

Detecting changes : https://kubernetes.io/docs/reference/using-api/api-concepts/#efficient-detection-of-changes

https://kubernetes.io/docs/reference/using-api/api-concepts/#efficient-detection-of-changes

Operators: Control Loops & Operational Intelligence

● Operators were first introduced by CoreOS in 2016

● Inspired by how DevOps engineers used their ‘domain’ knowledge to run software in production

● Operator is a “workload” specific control loop which embodies the operational knowledge needed

to run workloads reliably in production

● At the very foundation of any operator, resides Kubernetes resources & controllers but it’s value is

enhanced through ‘workload aware’ automation

Introducing Operators a blog from 2016 by CoreOS :
https://www.redhat.com/en/blog/introducing-operators-putting-operational-knowledge-into-software

http://www.redhat.com/en/blog/introducing-operators-putting-operational-knowledge-into-software

Operators: The Building Blocks

● Kubernetes API extensions (A.K.A Custom Resources)

● Custom controllers

Reference : https://kubernetes.io/docs/reference/using-api/api-concepts/

https://kubernetes.io/docs/reference/using-api/api-concepts/

Quick Introduction: Custom Resources

● Available since Kubernetes 1.7

● Serves a way to extend Kubernetes API and declare a custom objects

● Custom Resources also serves as abstraction to hide lower level Kubernetes details

● Used in the cloud native landscape to provide a “Kubernetes-first” experience

● Istio, Linkerd, Flux, Argo and many other CNCF hosted projects use Custom Resources

Quick Introduction: Custom Resource Definition

● CRDs form the base for creating CRs, that is Custom Resources

● It’s an API natively available in Kubernetes to help you define the anatomy of your Custom

Resource

● When it comes to persisting & serving your CRs defined via CRDs, API server makes no distinction

● State of a Custom Resource is also persisted in ETCD alongside the state of native Kubernetes

resources like a Deployment or a Service

● As a provider of the CR, you can control versioning & also instruct API server to do conversions

between the versions when a CR is requested (e.g. moving from v1beta1 to v1)

Reference : https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/

Example: CRD & Custom Resource

Reference : https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#create-a-customresourcedefinition

What this may look like:

1. Define the CR using the CRD
2. Apply the CRD to the cluster
3. Create a CR manifest
4. Apply the CR to the cluster

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#create-a-customresourcedefinition

What’s Next?
● Define a Custom Resource Definition (CRD) and create a Custom Resource following the schema

provided by the CRD

● But Kubernetes as such does not know what to do with it

● That’s where Custom Controllers come in

● Operator SDK (part of the Operator Framework) offers an easy way to bootstrap Custom

Controllers & deploy to your Kubernetes cluster

Kubebuilder Framework

● Kubebuilder maintained by the API Machinery SIG provides an easier and efficient way to write custom

controllers

● Kubebuilder provides Go modules/packages to help you simplify the operator development:

○ Manager

■ Client

■ Cache

○ Controller

■ Reconciler

■ Predicate

○ Webhook

■ Admission Request

■ Validator
Further Reading: https://book.kubebuilder.io/introduction

https://book.kubebuilder.io/introduction

Operator SDK

● Bases on Kubebuilder, CoreOS/RedHat put together the Operator Framework
● Operator SDK is a part of the Operator Framework
● Operator SDK uses the Kubernetes ‘Controller-Runtime’ library to make operator development

easier, scalable, automated and more effective
○ Scaffolding
○ Automated testing
○ Code generation & simple bootstrapping
○ Extensions
○ API abstraction
○ Supports writing operators using Ansible, Helm or Go

Operator Framework : https://sdk.operatorframework.io/

https://sdk.operatorframework.io/

Operator Initialization & Code Generation
Key Commands:

operator-sdk init --domain acme.io --repo github.com/acme/redis-operator

 operator-sdk create api --group cache --version v1alpha1 --kind Redis --resource --controller

make generate

make manifests

make install run

kubectl apply -f <custom-resource-file>.yaml

kubectl patch redis redis-cache -n conf42-init -p '{"spec":{"size": 4}}' --type=merge

Reference: https://sdk.operatorframework.io/docs/building-operators/golang/tutorial/

https://sdk.operatorframework.io/docs/building-operators/golang/tutorial/

