
How to Measure PromQL/MetricsQL
Expression Complexity

Roman Khavronenko | github.com/hagen1778

https://github.com/hagen1778

Roman Khavronenko
Software engineer with experience in distributed systems,

monitoring and high-performance services.

Co-founder of VictoriaMetrics

https://github.com/hagen1778

https://twitter.com/hagen1778

https://github.com/VictoriaMetrics
https://github.com/hagen1778
https://twitter.com/hagen1778

The High Performance
Open Source Time Series Database & Monitoring Solution

13k stars org
200+ contributors Apache 2.0 license

Grammarly, CERN,
Roblox, Adidas, Wix

Use cases Monitoring, alerting Monitoring, alerting

Is open-source Yes Yes

Query language PromQL MetricsQL

Grafana integration Yes Yes

Scalability Vertical Horizontal and Vertical

Developer waiting for Grafana dashboard to load…

Slow query:

Fast query:

Because those queries scan different amounts of data!

How to optimize SQL query?

1. Use Indexes, but avoid unnecessary Indexes

2. Select only necessary columns

3. Use WHERE - filter data as early as possible

4. Database design: normalize or denormalize data

5. Partition tables into smaller, manageable pieces

> SELECT * FROM bar;

How to optimize SQL query?

SELECT foo FROM bar # select one column
WHERE date = '2024-06-01' # partition by time
AND user = 'baz'; # index by user

Optimized query:

Can we apply the same tips to PromQL/MetricsQL?

1. Use Indexes, but avoid unnecessary Indexes

2. Select only necessary columns

3. Use WHERE - filter data as early as possible

4. Database design: normalize or denormalize data

5. Partition tables into smaller, manageable pieces

Data model in Prometheus/VictoriaMetrics

foo{label="1"} 42 1686821549
foo{label="2"} 12 1686821549
foo{label="3"} 24 1686821549
foo{label="4"} 8 1686821549

https://docs.victoriametrics.com/keyconcepts/#data-model

https://docs.victoriametrics.com/keyconcepts/#data-model

Data model in Prometheus/VictoriaMetrics

1. Data model is pre-defined and can't be changed
2. Indexes are created automatically

3. Data blocks are partitioned by time
4. The stored data types are strings (name and metadata)

and numerics (value and timestamp)

What is a time series?

When PromQL/MetricsQL query can be slow?

1. When it selects big number of time series.

2. When it selects big number of data samples.

Select all series and samples of metric "foo"

Select subset of series and samples of metric "foo"

Select subset of series and samples for last 5m

Selecting less data is the most effective way to
optimize the query performance

How many series query selects?

1. Use the combination of count and last_over_time

functions over series selector from the query

2. For instant query:

a. count(last_over_time(<series selector>[5m]))
3. For range query:

a. count(last_over_time(<series selector>[<range>]))

https://docs.victoriametrics.com/MetricsQL.html#count
https://docs.victoriametrics.com/MetricsQL.html#last_over_time
https://prometheus.io/docs/prometheus/latest/querying/basics/#time-series-selectors

How many series query selects?

How many samples query selects?

1. Use the combination of sum and count_over_time

functions over series selector from the query

2. For instant query:

a. sum(count_over_time(<series selector>[5m]))
3. For range query:

a. sum(count_over_time(<series selector>[<range>]))

https://docs.victoriametrics.com/MetricsQL.html#sum
https://docs.victoriametrics.com/MetricsQL.html#count_over_time
https://prometheus.io/docs/prometheus/latest/querying/basics/#time-series-selectors

How many samples query selects?

No matter what your query is…

The slower this query will be!

● the more series you select
● and the more data samples you process

Selected samples != Processed samples

Usually, the number of processed raw samples matches the

number of selected raw samples. Unless:

● You use range query (i.e. for plotting graphs in Grafana)

● The lookbehind window [<duration>] exceeds the step

param

Selected samples != Processed samples

Calculates max_over_time(node_systemd_unit_state[1h])
3600 times, each time processing all samples of node_systemd_unit_state
metric on 1h time interval.

What about functions? How slow are they?

1. Label manipulation functions such as label_replace, label_join and label_set.

2. Transform functions such as abs, round and time

3. Aggregate functions such as sum, count, avg, min, max.

4. Rollup functions such as rate, increase, min_over_time

and and quantile_over_time.

* Ordered from the least expensive to the most expensive

https://docs.victoriametrics.com/MetricsQL.html#label-manipulation-functions
https://docs.victoriametrics.com/MetricsQL.html#label_replace
https://docs.victoriametrics.com/MetricsQL.html#label_join
https://docs.victoriametrics.com/MetricsQL.html#label_set
https://docs.victoriametrics.com/MetricsQL.html#transform-functions
https://docs.victoriametrics.com/MetricsQL.html#abs
https://docs.victoriametrics.com/MetricsQL.html#round
https://docs.victoriametrics.com/MetricsQL.html#time
https://docs.victoriametrics.com/MetricsQL.html#aggregate-functions
https://docs.victoriametrics.com/MetricsQL.html#sum
https://docs.victoriametrics.com/MetricsQL.html#count
https://docs.victoriametrics.com/MetricsQL.html#avg
https://docs.victoriametrics.com/MetricsQL.html#min
https://docs.victoriametrics.com/MetricsQL.html#max
https://docs.victoriametrics.com/MetricsQL.html#rollup-functions
https://docs.victoriametrics.com/MetricsQL.html#rate
https://docs.victoriametrics.com/MetricsQL.html#increase
https://docs.victoriametrics.com/MetricsQL.html#min_over_time
https://docs.victoriametrics.com/MetricsQL.html#quantile_over_time

What about functions? How slow are they?

5. Subqueries such as:
● avg_over_time((rate(errors_total[5m]) > bool 10)[1h:1m])

● max_over_time(deriv(rate(traveled_meters_total[1m])[5m:])[1h:])

● min_over_time(rate(requests_total[5m])[30m:])

subqueries:
> are expensive: the inner query is evaluated many times
> are complicated: hard to write, hard to read and understand

https://valyala.medium.com/prometheus-subqueries-in-victoriametrics-9b1492b720b3

Performance improvement tips: query caching

● Prometheus doesn't support caching out-of-the-box

● Caching reverse-proxies to the rescue:

○ https://github.com/jacksontj/promxy

○ Thanos query frontend

https://github.com/jacksontj/promxy
https://thanos.io/v0.16/components/query-frontend.md/#caching

Performance improvement tips: query caching

Performance improvement tips: query caching

Performance improvement tips: filters pushdown

Apply filters to both parts of expression

● Pre-compute time series with recording rules

● Pros:

○ Queries over pre-computed series are faster
● Cons:

○ Constant read pressure on database

○ Extra time series to process and store

○ Recording rules need to be maintained

Performance improvement tips: recording rules

https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/#recording-rules

Summary

● Measure complexity of the PromQL/MetricsQL queries

● Use caching frontend to reduce pressure on database

● Carefully craft queries to get optimal performance

● Use recording rules for performance-critical queries

Can VictoriaMetrics make it easier?

Can VictoriaMetrics make it easier?

Yes!
● Cardinality explorer
● Query tracing
● Built-in caching
● Filters pushdown
● Stream aggregation

VictoriaMetrics: cardinality explorer

VictoriaMetrics allows exploring time series cardinality to identify:
● Metric names with the highest number of series
● Labels with the highest number of series
● Values with the highest number of series for the selected label
● label=name pairs with the highest number of series
● Labels with the highest number of unique values

➔ Available built-in in VictoriaMetrics components
➔ Supports specifying Prometheus URL

VictoriaMetrics: cardinality explorer

https://github.com/VictoriaMetrics/VictoriaMetrics/issues/4320

VictoriaMetrics: query tracing

VictoriaMetrics supports query tracing for detecting bottlenecks during query processing.

This is like EXPLAIN ANALYZE from Postgresql!

VictoriaMetrics: count number of series and samples

Trace shows exactly how many series and samples was

selected and processed by query

VictoriaMetrics: built-in caching

VictoriaMetrics automatically caches Range and Instant

queries. No proxies needed!

VictoriaMetrics: filters pushdown

VictoriaMetrics automatically performs filters pushdown

VictoriaMetrics: Stream aggregation vs Recording rules

The number of time series stored in TSDB
is Data-in + Recording Rules results

The number of time series stored in TSDB
is only what needs to be persisted

VictoriaMetrics: Stream aggregation vs Recording rules

Additional materials
1. How to optimize PromQL and MetricsQL queries

2. Prometheus Subqueries in VictoriaMetrics

3. Query tracing

4. Streaming aggregation

5. VictoriaMetrics playground

6. Documentation

https://valyala.medium.com/how-to-optimize-promql-and-metricsql-queries-85a1b75bf986
https://valyala.medium.com/prometheus-subqueries-in-victoriametrics-9b1492b720b3
https://docs.victoriametrics.com/#query-tracing
https://docs.victoriametrics.com/stream-aggregation.html
https://play.victoriametrics.com/select/accounting/1/6a716b0f-38bc-4856-90ce-448fd713e3fe/prometheus/graph/#/?g0.range_input=30m&g0.end_input=2023-09-09T13%3A02%3A39&g0.tab=0&g0.relative_time=last_30_minutes
https://docs.victoriametrics.com/

Questions?
● https://github.com/VictoriaMetrics

● https://github.com/hagen1778

https://github.com/VictoriaMetrics/VictoriaMetrics
https://github.com/hagen1778

