From Podcast to Podcast:

Automated Content Localization
Using OpenAl APl Stack

How to Automate Podcast Translations with Whisper, GPT-40, and TTS5-1

Why Automate Podcast Localization?

Make content
accessible to a wider
audience.

Automating podcast localization makes
content accessible to global audiences,
breaking language barriers and

Increasing engagement.

Maintain tone
and style in
translation.

Translation isn't just about words; it's
about preserving the original tone,
humor, and style, which is done using

GPT-40.

Reduce manual effort
while ensuring
high-quality results.

Automation minimizes human
intervention, saving time and costs,

while still ensuring high-quality results.

The Automated Podcast Localization Pipeline

Podcast Downloader: Fetches metadata and audio.

Transcription: Converts speech to text using Whisper.

Text Processing: Enhances text and translates it using GPT-40.

Speech Synthesis: Converts translated text into Russian audio using TTS-1.

Audio Assembly: Merges translated audio files.

RSS Generation: Creates an RSS feed for the translated podcast.

System Architecture

Linear pipeline:

Key Technologies

Kotlin: Podcast4j: OpenAl API: OkHttp (via Ktor):
i - « Whisper-1: Transcribes audio

Core language, >implifies fetching Manages HTTP requests.

chosen for clarity podcasts from accurately.

and compatibility. podcastindex.org. * GPT-40: Enhances and

translates text.

. TFS—j . Converts text to S‘peech.
|

| I | |

e
=

| | | |
|
| | | | ‘ l‘

Jackson: XML APIs: FFmpeg (planned):
Handles JSON Builds the RSS Will enhance audio merging
data. feed.

in the future.

~etching Podcast Metadata and Audio

Use Podcast4j to fetch episode data from Podcastindex.org.

Podcast4] queries Podcastindex.org to retrieve essential episode information,

including title, description, publish date, and audio file location.

Download MP3 files for processing.

il After retrieving the metadata, Podcast4] downloads the

MP3

corresponding MP3 files, providing the core content for

processing in the subsequent stages of the workflow.

ranscription Process

Whisper-1 API converts Works well for most LongercepiSOflejc. may
audio to English text. recordings under 25 MB. require splitting.

Improving and Translating Transcription

First, GPT-40 enhances grammar, punctuation, and readability.

val prompt = """
Context: this is a transcription of a podcast in $sourcelanguage, fix the grammar and punctuation,

or translate it to $sourcelanguage if it's in a wrong language.
Detect where podcast starts and cut unrelated content at start.

Output format: {{formatted text In $sourcelanguage}}. Output with no introduction, only output text.

Input: S$transcription
"nn trimIndent ()

Then translates text to Russian while maintaining tone.

val prompt = """
Translate text below to the $targetlLanguage language.
Keep the translation as close to the original in tone and style as you can.

Text: StextToTranslate
""" trimIndent/()

Converting Text to Speecn

Russian synthesis Challenges m

A lively Nature Podcast

Russian audio Limited voice options, host gets an upbeat
generated using slight American accent. TTS-1 voice saying
OpenAl's TTS-1. "3apaBcTBynTE” With 3

slight American twang.

Audio Assembly Challenges

Merging
Audio Files

Puplishing the Translated Podcast

Two important aspects of the process for
distributing the translated podcast:

XML-based RSS feed Translated metadata for better
creation. discoverability.

Example:
Nature Podcast RSS title changes from “From viral variants...”
to “OT BMPYCHbIX BapnaHTOB...".

Overcoming Technical Hurdles

Style
preservation
in translation.

File size limits
in Whisper.

Audio merging
complexities.

Optimizing GPT-40 for Translation

Grammar correction Handling
prompt. mixed-language
content.

Tone preservation

techniques.

Example

* Input: “Al is cool, and in Russian, kpyTto!”
* Transcript: “Al is cool, and in Russian, kruto!”

* Translated: "1 kpyTon, 1 No-pycckn Toxe KpyTo!”

Maintaining Speaker's Tone

Example of TTS-1 Voice Handling Before/After

Selection Limitations:

Podcast-Specific Comparison Example:
Content:

The Russian TTS-1 voices

have an American accent, All parts of the podcast,

Original: "Al is transforming

making them sound slightly including intros, outros,
science...”
non-native. While usable, and ads, are translated.
there's room for In the future, we plan to
, Localized Audio: "1/
improvement, such as localize ads for Russian

NpeobpasyeTt Hayky..." (with a

making a lively host sound audiences to make

slight American accent).

less twangy when saying them more relevant

"3apaBcTBynTe.”

0—0——0—

—nsuring Translation Accuracy

BLEU scores provide a quantitative measure of translation accuracy, while native
speaker feedback ensures that the translation sounds natural and culturally

appropriate. These improvements will speed up the review process and help maintain

high translation quality as the system scales.

Before & After Comparison

* "Al'is transtorming science...”

Example

snippet:

W Localized Audio: "N npeobpasyeT Hayky..." (slight
American accent).

Pre-recorded Sample Transformation

Show a Nature Podcast snippet:
* Original: “From viral variants to devastating storms...”

* Localized: "OT BMpPYCHbIX BapraHTOB A0 pa3pyLnTeibHbIX LUTOPMOB..."

Side-by-Side Transcript Comparison

Side-by-Side Transcript Comparison
* Original: “Al is changing the world"
* Fixed: "Al is changing the world.”

» Translated: "I meHseT munp.”

Key Code Snippets Showcase
(Downloading the Podcast)

fun downloadPodcastEpisodes (podcastId: Int): List<Pair<Episode, Path>> ({
val podcast = client.podcastService.getPodcastByFeedId (podcastId)
val episodes = client.episodeService
.getEpisodesByFeedld (ByFeedIdArg.builder () .id (podcast. id) .build())

return episodes.mapNotNull { e ->
val mp3Path = tryDownloadEpisode (podcast, e)
mp3Path?.let { e to mp3Path }

Transcribing Audio with Whisper

suspend fun transcribeAudio (audioFilePath: Path): String {
val audioFile = FileSource (KxPath(audioFilePath.toFile () .toString()))

val request = TranscriptionRequest (
audio = audioFile,
model = ModelId("whisper-1")

)

return openAIClient.transcription (request) . text

Improving and Translating Text with GPT-40

suspend fun improveTranscription (transcription: String, sourcelanguage: String): String {
val prompt = """
Context: this is a transcription of a podcast in S$sourcelanguage, fix the grammar and punctuation,
or translate it to $sourcelanguage if it's in a wrong language.
Detect where podcast starts and cut unrelated content at start.

Output format: {{formatted text In $sourcelanguage}}. Output with no introduction, only output text.

Input: S$transcription
""" _trimIndent()

val request = ChatCompletionRequest (
model = ModelId("gpt-4o0"),
messages = l1listOf(
ChatMessage (
role = ChatRole.System,
content = prompt

) s

val response = openAIClient.chatCompletion (request)

return response.choices.first() .message.content!!

Generating Speech with TTS-1

suspend fun textToSpeech (translatedText: String, fileName:
val result = mutableListOf<Byte> ()
withContext (Dispatchers.IO) {

val outputPath = createFileInFolder ("output", fileName, "mp3")
val fileOutputStream = outputPath.outputStream()
val chunks = splitTextIntoChunks (translatedText)

String) : ByteArray {

chunks. forEachIndexed { index, chunk ->

val speechMp3 = textToSpeechChunked (chunk)

val path = createTempFile("$fileName-chunk-$index", " .mp3")
path.writeBytes (speechMp3)

result.addAll (speechMp3. toTypedArray())

fileOutputStream.write (speechMp3)

println("Chunk ${index + 1}/${chunks.size} processed")
}

fileOutputStream.close ()
}
return result. toByteArray()

(Generating the RSS Feed

fun generateRSS (episodes: List<PodcastEpisode>, outputFile: File): Document {
val doc = DocumentBuilderFactory.newInstance () .newDocumentBuilder () .newDocument ()

// Create root rss element

val rss = doc.createElement("rss")
rss.setAttribute ("version", "2.0")
doc.appendChild (rss)

// Create channel element
val channel = doc.createElement ("channel™)
rss.appendChild (channel)

// Add podcast info
channel.appendChild (doc.createElement ("title") .apply { textContent = podcastInfo.title })
// same for description, link, language, and copyright

// Add episodes

episodes. forEach { episode ->
val item = doc.createElement("item")
channel . appendChild (item)

with(doc) {
item.appendChild (createElement ("title") .apply { textContent = episode.title })
item.appendChild (createElement ("description") .apply { textContent = episode.description })
// same for pubDate, enclosure, and guid

return doc

—xample Output

To wrap up, this is the result of translation a part of an English podcast into

Russian. Notice the american accent in the Russian speech.

We are also creating an RSS feed behind the scenes for distribution

—xample Output

This is Episode 2 of What's in a Name? In the previous episode, we learned
how scientists name species, and the controversies that can result from
those names. But names don't just matter to scientists; they can impact all
of us. In this episode, we're moving out of the universities and scientific
publications where names are chosen, and into the public realm, where names
chosen by scientists meet non-scientists.

STo BTOPOM »3mmsBon "Uro B mMeHm?'". B npemmgyueM s3OmM300e M y3HANM, KaK y4YeHHe
HaBHBAaKWT BUOH M KaKMe MOI'yT BOBHMKATE CIOPH M3-3a 3TMX Hal3BaHumMm. Ho mumMeHa
BAaXHBl He TOJILKO HOJISI Y4YEeHHIX, OHM MOI'yT OKAaBHHBATE BJIMSHME Ha BCexXx Hac. B sTomMm
SNM304e MBl YXOOVM M3 YHMBEPCUTETOB M HAYYHHX Nybamkaumm, I'Oge MMeHAa
BHOMPAKNTCsI, M IIepexonmMM B OOmWecCTBEeHHYW cbepy, I'me mMeHa, BHOpPpaHHBE Yy4YeHHMM,
BCTpeYanTCsT C HenpobpeccmoHaNIBHBIMM JIIOOBMM .

-uture Improvements

a Automated episode splitting.

@ FFmpeg-based merging.

@ Custom voice training for TTS.

Conclusion

Key Takeaways

ML deployment is iterative and

evolving.

Combining OpenAl's tools

enables high-quality localization.

Future enhancements will further refine the process.

Thank

You!

