Building Zero Trust Security
Infrastructure in Rust

Memory Safety Meets Network Security

1)

A practical guide for security engineers and software developers implementing
secure-by-design network components with Rust's safety guarantees and
performance benefits.

Sachin Kapoor

College of Technology, Pantnagar, India

Agenda

—— —0— —0—

Zero Trust Fundamentals Rust's Security Advantages Building Blocks

Core principles and challenges of Zero How Rust's ownership model and type Key Rust crates and components for
Trust architecture system align with Zero Trust principles secure infrastructure
Implementation Patterns Case Studies & Performance

Practical patterns for identity-aware proxies, policy engines, and Real-world implementations achieving security with sub-

observability systems millisecond latency

Zero Trust Security Fundamentals

Zero Trust security assumes breach and verifies every request as if it
originates from an untrusted network:

e Never trust, always verify

e Least privilege access

Assume breach

Explicit verification of identity, device, and context

Continuous monitoring and validation

Traditional security models struggle with the performance overhead

of continuous verification while maintaining strong security
guarantees.

Why Rust for Zero Trust?

Memory Safety Without GC

Rust's ownership model prevents memory
vulnerabilities (buffer overflows, use-
after-free) without runtime overhead

* No garbage collection pauses

e Predictable performance for real-time
security decisions

Type System Enforces
Correctness

Strong type system and compile-time
checks ensure security properties

Impossible to forget authentication
checks

Context propagation guaranteed by
the compiler

Zero-Cost Abstractions

High-level security abstractions with C-
like performance

e Efficient cryptographic operations

e Fast authentication and authorization
checks

The synergy between Rust's safety guarantees and performance characteristics creates an ideal foundation for Zero Trust architecture

implementation.

Rust's Ecosystem for Zero Trust

Components

Networking & TLS Authentication & Identity

e tokio: Async runtime for high- .
performance networking .

e rustls: Memory-safe TLS .
implementation

e webpki: Certificate validation .
outperforming OpenSSL

e quinn: QUIC protocol
implementation

Infrastructure & Observability
e hyper: HTTP/HTTPS implementation

e tower: Middleware composition

jsonwebtoken: JWT verification
ring: Cryptographic primitives

oauth2-rs: OAuth2
implementation

argon2: Password hashing

e tracing: Structured logging and diagnostics

e metrics: Performance monitoring

Building Identity-Aware Proxies

Identity-aware proxies are foundational Zero Trust
components that authenticate and authorize every
request:

e |dentity verification at network edge
e Fine-grained authorization

e Context-aware policy enforcement

e Traffic encryption and validation

// ldentity-aware middleware using Tower
pub struct IdentityVerifier {

inner: S,

auth_service: Arc,

}

impl Service> for IdentityVerifier

where

S: Service, Response = Response>,

B: Body,

{

/1 Verify identity before passing to inner service
async fn call(&mut self, req: Request) -> Result {
let identity = self.auth_service.verify(&req).await?;
let req = req.with_extension(identity);
self.inner.call(req).await

}

}

Policy Engine Implementation

Leveraging Rust's Trait System

Rust traits enable extensible, type-safe policy implementations:

Abstract over different identity providers

Compose policies with combinators

Context-aware authorization decisions

Compile-time verification of policy logic

Using serde for configuration parsing ensures type-safe policy
definitions without runtime surprises.

/1 Policy traits for extensible authorization
pub trait Policy {
async fn evaluate(
&self,
identity: &ldentity,
resource: &Resource,
context: &RequestContext
) -> Result;

// Composable policies
pub struct AlIOf {
policies: Vec

, } impl Policy for AllOf

{ async fn evaluate(&self, identity: &ldentity, resource: &Resource,
context: &RequestContext) -> Result { // All policies must approve } }

Observability Systems for Zero
Trust

U”[] Real-time Metrics

Rust's metrics crate enables low-overhead monitoring of security events,
with histograms for latency tracking and counters for authentication events
—all without GC pauses.

TM Structured Tracing

The tracing ecosystem provides structured context propagation across
async boundaries, essential for correlating security events in distributed
systems.

& Anomaly Detection

Rust's performance allows real-time statistical analysis of traffic patterns to
identify potential breaches without introducing latency spikes.

Secure Communication Implementation

UIES T LBEE Certificate Validation

Memory-safe TLS implementation that 6
outperforms OpenSSL while eliminating {L:}
entire classes of vulnerabilities

Strict certificate validation with webpki
ensures proper chain of trust verification

Mutual TLS O QUIC Protocol
Service-to-service authentication with Modern, secure transport protocol
client certificates for strong identity 55 implementation with quinn for reduced
verification connection setup time

Rust's strong type system makes improper certificate validation a compile-time error rather than a runtime vulnerability, aligning perfectly with
Zero Trust's "never trust, always verify" principle.

Supply Chain Security

Secure Dependency Management

Rust's cargo ecosystem provides robust tooling for maintaining secure
dependencies:

e cargo audit: Automatically scan dependencies for known vulnerabilities
e cargo crev: Cryptographically verifiable code reviews

e cargo deny: Enforce policy on dependency licenses and sources

e cargo vendor: Vendor dependencies for air-gapped environments

These tools provide essential supply chain security for Zero Trust environments
where every component must be verified.

Zero Trust extends beyond runtime verification to

build-time and deployment verification, which Rust's
ecosystem supports exceptionally well.

Performance Case Studies

0.3ms 10k /s 99.999%

Authentication Latency Connections Availability
Average latency for full JWT validation Concurrent secure connections handled per System availability achieved by eliminating GC
including signature verification and claims core with full Zero Trust verification pauses and memory-related crashes
checking

"Our Rust-based Zero Trust proxy reduced latency by 65% while eliminating all memory-related security incidents compared to our previous
C++ implementation."

— Security Engineering Lead, Fortune 500 Financial Services Company

Key Takeaways

Perfect Alignment

Rust's ownership model and type system naturally enforce
Zero Trust principles at compile time

Performance Without Compromise

Achieve security verification with sub-millisecond latency
through zero-cost abstractions

Ecosystem Maturity

Rust's security-focused ecosystem provides battle-tested
components for production use

Next Steps

e Evaluate your current authentication bottlenecks

e |dentify security-critical components for Rust migration
e Start with isolated services like authentication gateways
e Build proof-of-concept with tokio, rustls, and tower

* Measure performance improvements and security guarantees

