
Building Zero Trust Security
Infrastructure in Rust

Memory Safety Meets Network Security

A practical guide for security engineers and software developers implementing
secure-by-design network components with Rust's safety guarantees and
performance benefits.

Sachin Kapoor

College of Technology, Pantnagar, India

Agenda

1

Zero Trust Fundamentals

Core principles and challenges of Zero
Trust architecture

2

Rust's Security Advantages

How Rust's ownership model and type
system align with Zero Trust principles

3

Building Blocks

Key Rust crates and components for
secure infrastructure

4

Implementation Patterns

Practical patterns for identity-aware proxies, policy engines, and
observability systems

5

Case Studies & Performance

Real-world implementations achieving security with sub-
millisecond latency

Zero Trust Security Fundamentals

Zero Trust security assumes breach and verifies every request as if it
originates from an untrusted network:

Never trust, always verify

Least privilege access

Assume breach

Explicit verification of identity, device, and context

Continuous monitoring and validation

Traditional security models struggle with the performance overhead
of continuous verification while maintaining strong security
guarantees.

Why Rust for Zero Trust?

Memory Safety Without GC

Rust's ownership model prevents memory
vulnerabilities (buffer overflows, use-
after-free) without runtime overhead

No garbage collection pauses

Predictable performance for real-time
security decisions

Type System Enforces
Correctness

Strong type system and compile-time
checks ensure security properties

Impossible to forget authentication
checks

Context propagation guaranteed by
the compiler

Zero-Cost Abstractions

High-level security abstractions with C-
like performance

Efficient cryptographic operations

Fast authentication and authorization
checks

The synergy between Rust's safety guarantees and performance characteristics creates an ideal foundation for Zero Trust architecture
implementation.

Rust's Ecosystem for Zero Trust
Components

Networking & TLS

tokio: Async runtime for high-
performance networking

rustls: Memory-safe TLS
implementation

webpki: Certificate validation
outperforming OpenSSL

quinn: QUIC protocol
implementation

Authentication & Identity

jsonwebtoken: JWT verification

ring: Cryptographic primitives

oauth2-rs: OAuth2
implementation

argon2: Password hashing

Infrastructure & Observability

hyper: HTTP/HTTPS implementation

tower: Middleware composition

tracing: Structured logging and diagnostics

metrics: Performance monitoring

Building Identity-Aware Proxies

Identity-aware proxies are foundational Zero Trust
components that authenticate and authorize every
request:

Identity verification at network edge

Fine-grained authorization

Context-aware policy enforcement

Traffic encryption and validation

// Identity-aware middleware using Tower
pub struct IdentityVerifier {
 inner: S,
 auth_service: Arc,
}

impl Service> for IdentityVerifier
where
 S: Service, Response = Response>,
 B: Body,

{
 // Verify identity before passing to inner service
 async fn call(&mut self, req: Request) -> Result {
 let identity = self.auth_service.verify(&req).await?;
 let req = req.with_extension(identity);

 self.inner.call(req).await
 }
}

Policy Engine Implementation

Leveraging Rust's Trait System

Rust traits enable extensible, type-safe policy implementations:

Abstract over different identity providers

Compose policies with combinators

Context-aware authorization decisions

Compile-time verification of policy logic

Using serde for configuration parsing ensures type-safe policy
definitions without runtime surprises.

// Policy traits for extensible authorization
pub trait Policy {
 async fn evaluate(
 &self,

 identity: &Identity,
 resource: &Resource,
 context: &RequestContext
) -> Result;
}

// Composable policies
pub struct AllOf {
 policies: Vec

, } impl Policy for AllOf

 { async fn evaluate(&self, identity: &Identity, resource: &Resource,
context: &RequestContext) -> Result { // All policies must approve } }

Observability Systems for Zero
Trust

Real-time Metrics

Rust's metrics crate enables low-overhead monitoring of security events,
with histograms for latency tracking and counters for authentication events
4all without GC pauses.

Structured Tracing

The tracing ecosystem provides structured context propagation across
async boundaries, essential for correlating security events in distributed
systems.

Anomaly Detection

Rust's performance allows real-time statistical analysis of traffic patterns to
identify potential breaches without introducing latency spikes.

Secure Communication Implementation

Rust's strong type system makes improper certificate validation a compile-time error rather than a runtime vulnerability, aligning perfectly with
Zero Trust's "never trust, always verify" principle.

TLS with rustls

Memory-safe TLS implementation that
outperforms OpenSSL while eliminating

entire classes of vulnerabilities

Certificate Validation

Strict certificate validation with webpki
ensures proper chain of trust verification

QUIC Protocol

Modern, secure transport protocol
implementation with quinn for reduced
connection setup time

Mutual TLS

Service-to-service authentication with
client certificates for strong identity

verification

Supply Chain Security

Secure Dependency Management

Rust's cargo ecosystem provides robust tooling for maintaining secure
dependencies:

cargo audit: Automatically scan dependencies for known vulnerabilities

cargo crev: Cryptographically verifiable code reviews

cargo deny: Enforce policy on dependency licenses and sources

cargo vendor: Vendor dependencies for air-gapped environments

These tools provide essential supply chain security for Zero Trust environments
where every component must be verified.

Zero Trust extends beyond runtime verification to
build-time and deployment verification, which Rust's
ecosystem supports exceptionally well.

Performance Case Studies

0.3ms
Authentication Latency

Average latency for full JWT validation
including signature verification and claims

checking

10k/s
Connections

Concurrent secure connections handled per
core with full Zero Trust verification

99.999%
Availability

System availability achieved by eliminating GC
pauses and memory-related crashes

"Our Rust-based Zero Trust proxy reduced latency by 65% while eliminating all memory-related security incidents compared to our previous
C++ implementation."

4 Security Engineering Lead, Fortune 500 Financial Services Company

Key Takeaways

Perfect Alignment

Rust's ownership model and type system naturally enforce
Zero Trust principles at compile time

Performance Without Compromise

Achieve security verification with sub-millisecond latency
through zero-cost abstractions

Ecosystem Maturity

Rust's security-focused ecosystem provides battle-tested
components for production use

Next Steps

Evaluate your current authentication bottlenecks

Identify security-critical components for Rust migration

Start with isolated services like authentication gateways

Build proof-of-concept with tokio, rustls, and tower

Measure performance improvements and security guarantees

