Edge-Ready GenAl:
Engineering Low-Latency
Solutions for Resource-
Constrained Environments

Welcome to our comprehensive exploration of generative Al deployment in
resource-constrained environments. As enterprises increasingly demand
real-time Al capabilities, understanding how to optimize GenAl for edge
computing becomes critical for developers and engineers.

Today we'll examine systematic approaches to maintain performance
while significantly reducing computational demands, energy
consumption, and latency—opening new possibilities for intelligent edge
applications.

By: Sai Kalyan Reddy Pentaparthi

About me:

Sai Kalyan Reddy Pentaparthi
Principal Engineer Software
ST Engineering iDirect, Inc.

Working on enhancing connectivity through Global IP-Satellite Network Infrastructure

www.linkedin.com/in/saikalyanrp

http://www.linkedin.com/in/saikalyanrp

The Edge Computing Frontier

\

&

o

Limited Computational Resources

Edge devices generally have limited processing power,
memory, and storage compared to centralized cloud
systems.

Connectivity Challenges

Edge Al solutions must operate reliably even with
limited or no connection to cloud resources.

Energy Constraints

Many edge devices run on batteries or operate under
strict power limits, restricting Al model complexity.

Real-time Requirements

Applications often require low-latency responses,
increasing performance demands on edge models.

Edge Al Market Trends

e Strong Market Expansion:

© The Edge Al accelerator market is growing rapidly with a 38.9%
CAGR.

o ltis projected to reach $7.68 billion by 2027, showing strong
demand for on-device Al.

* Key Adoption Drivers:

o The need for low latency (78.3% of organizations) to ensure real-
time responses is a primary driver.

o Data privacy concerns (64.7%) also encourage local Al processing.
* Industry Adapting to Challenges:

o Model optimization (used in 82% of deployments) is widely
applied to run complex Al efficiently on constrained edge hardware.

The Edge Al Market
Evolution

1 Current State

Limited GenAl deployment at edge due to resource
constraints

2 Next 12 Months

Increasing adoption of optimized edge Al solutions

3 18-24 Months

Most enterprises requiring real-time edge Al capabilities

4 Beyond 2025

Ubiquitous edge Al with specialized hardware acceleration

Market forecasts indicate we're at an inflection point in edge Al adoption.
The next 18-24 months will witness a dramatic shift as enterprises
increasingly require real-time Al capabilities without the latency penalties
of cloud-dependent architectures.

This transition is being accelerated by advances in hardware acceleration,
model optimization techniques, and the growing necessity for privacy-
preserving local computation.

Edge Al Market Trends

* Strong Market Expansion:

© The Edge Al accelerator market is experiencing rapid growth (38.9%
CAGR).

o Projected to reach $7.68 billion by 2027, indicating significant
demand for on-device Al.

e Key Adoption Drivers:

o Driven primarily by the need for low latency (78.3% of
organizations) for real-time responses.

o Data privacy concerns (64.7%) are also a major factor, favoring
local processing.

* Industry Adapting to Challenges:

o Widespread model optimization (used in 82% of deployments)
shows the market actively working to run complex Al efficiently on
constrained edge hardware.

Hardware Acceleration Solutions

Mobile GPUs
Edge TPUs Increasingly optimized for Al
Neural Processing Google's purpose-built edge workloads
UnitS accelerators e Parallel processing FPG’A AcceleratOrS
Dedicated Al acceleratorsin ~ ® 4 TOPSinsmallform capabilities Reconfigurable hardware for
modern SoCs factor * Driver optimizations for custom workloads
® 10-15x energy efficiency > NPT R PN EETRE e Adaptable to specific
vs. CPU model architectures
e Specialized for common e Power-efficient for
neural net operations production deployments

2 B

=

i

Specialized hardware accelerators dramatically improve the performance and energy efficiency of edge Al workloads. Modern
system-on-chips (SoCs) increasingly incorporate neural processing units (NPUs) that deliver an order of magnitude better
performance-per-watt compared to general-purpose CPUs.

These purpose-built accelerators are specifically designed to handle the computational patterns of neural networks, with
optimized datapaths for matrix multiplication and activation functions that dominate Al workloads.

Edge GPU's: Overview

Table 1: Comparative Specification Overview of Select Edge GPU/Accelerator Families

NVIDIA NVIDIA
Jetson Jetson
Orin Orin NX AGK
MNano 16GB Crin

NVIDIA NVIDIA
Jetson RTX
4000
SFF Ada

Qualcomm
Snapdragon
X Elite (Rep.

Feature AMD Ryzen
Al 300

Series

Intel Core Intel Arc Google
Ultra (Rep. A3BOE Coral
NPU)Y? Dual

EdgeCortix
SAKURA-I

Manufacturer

Key
Accelerator

Al Perf.
(TOPS)

Memory
Capacity (GB)

Memory
Bandwidth
(GB/s)

TDP (W)

Typical Form
Factor

Super
BGE

NVIDIA

GPU +
Tensor
Cores

67 (INT8

16

100-157
Sparse) (INTH
Sparse)

64GB

NVIDIA

GPU +

Tensor
Cores +
DLAs

275
(INTS
Sparse)

64

MNVIDIA

GPU +
Tensor
Cores

19.2
TFLOPS
(FP32)

20

SFF PCle
Card

(Rep. NPUY'

AMD

NPU
(XDNA) +
iGPU
(RDMA)

~45 TOPS
(Total
System)*

System
RAM

LPDDRSX
(System)

Laptop TDP

Integrated
SoC

Intel

MPU +
iGPU (Arc)

~10-1
TOPS (NPU
only)®

System
RAM

LPDDRS/x
(System)

Laptop
TDP

Integrated
SoC

~5
TFLOPS
(FP32)

&
(GDDRe&)

186

Edge TPU
M.2

Google

TPU
(ASIC)

8 (INTS)

MNiA (Uses
Host)

MIA

~4
(Module)

M.2 E-Key

NPU)?

Cualcomm

NPU
(Hexagon)

45 (NPU
only)®

Systemn RAM

136
(LPDDRSX)

Laptop TDP

Integrated
SoC

EdgeCortix

DNA
(ASIC/FPGA)

A0 (INTB
Dense)

MiA (Uses
Host)

PCle Card /
Chip

Edge GPU's: Inference Performace

Table 2: LLM Inference Performance Comparison (lllustrative - Based on Fragmented Data)

Hardware

MVICHA GPU
(RTX 4090)

NVIDIA GFU
(RT* 3090)

NVIDIA Jetson
Orin Mano
Super

NVIDIA Jetson
Orin MX 16GE

AMD Ryzen Al
300 Series

AMD Ryzen Al
300 Series

Intel Core Ultra
(MPL)

Intel Arc ATTO
(16G8)

Mobile SoC
(Dimensity
9300)

LLM Model

Mistral 7B

Mistral 7B

Llama 3.1 8B

Llama 3.1 88

Mistral TB
Instruct

Llama /
Mistral

DeepSeek-
R1&7B

7B Model

Quantization

INT4 (AWE)

INT4 [AWE)

Optimized

GPTQ

(INT47)

IMT4 (W4A15E)

INT4 (W4AlE)

Optimized

Q4 K M

MiA (FP167)

Software/Framework

TensorRT-LLM vO.7.1

TensorRT-LLM wO. 71

TensorRET-LLM /
JetPack 6+

TensorRT-LLM w012
[Preview)

ONNX Runtime + Vitis
Al EP

OMNX Runtime + Vitis
Al EF

IPEX-LLM { OpenVING

llama.cpp (via IPEX-
LLM)

llama.cpp

Throughput

(Tokens/Sec)

Data Needed

Data Needed

Data Needed

Data Needed

Data Needed

Data Needed

~5x vs SDETO
(decode)

Latency
(TTFT ms /
ITL ms)

MfA f 5.9

MN& / -7.0

Data
Nesded

Data
Nesded

Datz
Nesded

Data
Nesded

Source/Motes

Single user benchmark.
Significantly faster than
llama.cpp (<100 TPS) on same
HWV.

Single user benchmark. ~62%
faster than llama.cpp (-87 TFS)
on same HW.

Capability confirmed,
performance claimed 1.7x
higher than Orin Nano. Specific
benchmarks pending.

Feasibility shown, requires
JetPack 6.1+, Specific
benchmarks pending.

Supported via LLM Hybrid OGA
flow (MPU+IGPU). Specific
performance data needed.

Supported via LLM Hybrid QG4
flow (NPU+IGPU). Specific
performance data needed.

Experimental suppart exists.
Performance highly dependent
on software maturity.

Feasibility shown for very large
models on desktop Arc GPU
with specific framewaork.

Relative CPU performance
shown, not absolute
TPS/Latency on GPU/MNPU.

Bevond Physical Hardware

TensorFlow Lite (TFLite)
Key Al Frameworks

PyTorch Mobile

NVIDIA TensorRT / TensorRT-LLM
ONNX Runtime (ORT)
Inference Optimization Engines

Intel OpenVINO / IPEX-LLM =

Other Frameworks

NVIDIA JetPack
AMD Ryzen Al Software
Vendor-Specific Software Stacks

Intel oneAPI/ OpenVINO / IPEX-LLM =

Qualcomm Al Stack / QNN SDK

Framework Implementation Options

TensorFlow Lite
ONNX Runtime

PyTorch Mobile

TVM

|
0 1.5 3 4.5
Execution Speed (lower is b... B Deployment Complexity (lowe... B Hardware Support (higheris...

Selecting the appropriate framework for edge deployment is critical. TensorFlow Lite offers excellent hardware support through
delegations to NPUs and GPUs, while ONNX Runtime provides superior cross-platform model portability and slightly better raw
execution speed for many workloads.

PyTorch Mobile excels in developer experience and deployment simplicity, making it attractive for rapid prototyping. TVM offers
the best performance through deep compiler optimizations but requires significantly more implementation complexity and
expertise to fully leverage its capabilities.

LLM Optimization
Techniques

Key techniques to optimize large language models (LLMs) include:

. Quantization (Most crucial technique)
. Network Pruning

1
2
3.
4
5

Knowledge Distillation

. Low-Rank Approximation / Factorization

. Memory Optimizations

Our talk will focus on the top 3 techniques in this list.

Quantization Techniques

Post-Training Quantization Quantization-Aware
Training

Converting pre-trained model weights

from floating-point (FP32) to lower Incorporating quantization effects

precision formats (INT8, INT4) after during the training process to minimize

training completion. accuracy loss when deploying with

. reduced precision.
e Minimal development effort

* No retraining required * Higherimplementation complexity

e Moderate accuracy trade-off e Better accuracy preservation

®* Model learns to compensate for
quantization artifacts

Dynamic Range
Quantization

Adaptively adjusting quantization
parameters based on the statistical
properties of activations during
inference.

® Balances accuracy and
performance

® Adapts to input characteristics

* Lower memory bandwidth
requirements

Precision-Aware
Quantization

Post-Training Quantization-Aware
Quantization Training

Simple conversion from FP32 to Incorporates quantization
INT8/INT4 after training is effects during training process.
complete. Minimal accuracy Models learn to compensate for
loss for many models. reduced precision.

Mixed-Precision Deployment

Different precision for different layers based on sensitivity analysis.
Critical layers may retain higher precision.

Quantization dramatically reduces the computational and memory
requirements of neural networks by representing weights and activations
at lower precision. Converting from 32-bit floating point to 8-bit integer
can yield 4x smaller models with 3-4x faster inference.

Advanced techniques like mixed-precision quantization allow for targeted
optimization, preserving full precision only where absolutely necessary
while aggressively quantizing less sensitive network components.

uantization Technique: PT

Post-Training Quantization (PTQ)

Quantization-Aware Training (QAT)

Dynamic Range Quantization

Mixed-Precision Quantization

What: Convert pre-trained FP32 model after training

Details: <2% quality degradation for INT8

Simpler

Faster implementation

No retraining needed

Higher accuracy loss vs. QAT

Often requires calibration data

GPU requirements for Float32 vs Int8 Weights

NVIDIA.

NVIDIA A10

Accelerated Graphics and Video with Al
for Mainstream Enterprise Servers

Enrich Graphics and Video Applications with Powerful Al

The NVIDIA A10 Tenser Core GPU combines with NVIDIA RTX Virtual
Workstation [vWS)] software to bring mainstream graphics and video with

Al services to mainstream enterprise servers, delivering the solutions that
designers, engineers, artists, and scientists need to meet today’s challenges.
Built on the latest NVIDIA Ampere architecture, the A10 combines second-
generation RT Cores, third-generation Tensor Cores, and new streaming
microprocessors with 24 gigabytes (GB) of GDDRé memory—allin a 190W
power envelope—for versatile graphics, rendering, Al, and compute
performance. From virtual workstations, accessible anywhere in the world,
to render nodes to the data centers running a variety of workloads, A10is
built to deliver optimal performance in a single-wide, full-height, full-length
PCle form factor.

NWVIDIA A10 is supported as part of NVIDIA-Certified Systems™, in the on-
prem data center, in the cloud, and at the edge. NVIDIA A10 builds on the

rich ecosystem of Al frameworks from the NVIDIA NGC™ catalog, CUDA-X™
libraries, over 2.3 million developers, and over 1,800 GPU-optimized applications
to help enterprises solve the most critical challenges in their business.

FP32

TF32 Tensor Core
BFLOAT16 Tensor Core
FP16 Tensor Core
INTE Tensor Core
INT4 Tensor Core

RT Cores

Encode / Decode

GPU Memory

GPU Memory Bandwidt
Interconnect

Form Factor

Max TOF Power

vGPU Software Support

Secure and Measured

Chirale

625TF | 125 TF*
125TF | 250 TF*

125TF | 250.TF*

250 TOPS | 500 TOPS*
500 TOPS | 1000 TOPS*
72

1 encoder

2 decoders
[+4W1 decode]

24 GB GDDRé

400 GB/s

PCle Gend: 44 GB/s
1-slot FHFL

150W

MVIDIA vPC/vApps,
NVIDIA RTX™ vWS,
NVIDIA Al Enterprise

Yes |optionall

Quantization Technique: QAT

What: Simulate quantization effects during training

Generally better accuracy preservation

Post-Training Quantization (PTQ)

Quantization-Aware Training (QAT)

More complex
Dynamic Range Quantization

Requires training data & pipeline
Mixed-Precision Quantization

Details: <1.5% degradation for INT8 Longer training time

Quantization Technique: Dynamic Range

Post-Training Quantization (PTQ)
What: Adapt parameters based on runtime statistics

Balance between PTQ/QAT
Quantization-Aware Training (QAT)

Adapts to input characteristics
Dynamic Range Quantization

Mixed-Precision Quantization

Potential runtime overhead

Quantization Technique: Mixed Precision

Post-Training Quantization (PTQ)

Quantization-Aware Training (QAT)

Dynamic Range Quantization

Mixed-Precision Quantization

What: Use different precision levels for layers

Details: ~70% compression, <1% accuracy loss

Balances compression and accuracy

Higher precision for sensitive layers

Requires analysis of sensitive layers

Needs framework/hardware support

Neural Network Pruning
Techniques

Identify Redundancy

(")\ Analyze weight distributions and activation patterns to
locate non-essential parameters

Structured Pruning

C Remove entire filters, channels, or neurons for hardware
compatibility

Iterative Magnitude Pruning

@ Gradually remove small weights while retraining to maintain
accuracy

Sensitivity Analysis

NG

Evaluate impact of pruning on overall model performance

Targeted pruning can reduce model footprints by 50-90% with minimal
accuracy impact. By systematically eliminating redundant parameters, we
create leaner networks that maintain essential performance
characteristics while requiring significantly fewer computational

resources.

Our research shows that iterative pruning combined with fine-tuning
yields the best results, allowing models to adapt to their reduced
parameter space while preserving critical functional pathways.

Pruning Process

Standard Network

Step 1: Train Initial Network Overparameterization (Potential)

Train until Performance/Convergence

Crucial Step: Determine Which Parts

Apply Criterion/Heuristic < See 'Techniques' Branch

Step 2: Identify & Remove Unimportant Elements

General Pruning Process

Set Weights to Zero

Remove Identified Elements

Remove Structures

Optional but Common

Regain Performance

Step 3: Fine-tune Pruned Network ; Retrain Smaller Network (Few Epochs)

Remaining Weights Adapt

Recover Lost Accuracy

Pruning Technique: Magnitude-Base

1. Magnitude-Based Pruning

2. Importance-Based Pruning

3. lterative Pruning

4. Related Concept: Lottery Ticket Hypothesis

a) Weight Pruning (Unstructured)

b) Unit/Neuron/Filter Pruning (Structured)

Granularity: Individual Weights

Mechanism: Remove Low Absolute Value Weights

Result: Sparse, Irregular Matrices

Pros: Simple Concept, High Compression Potential

Cons: Specialized Hardware/Libraries Often Needed

Granularity: Entire Structures

Mechanism: Remove Based on Aggregate Score

L1/L2 Norm of Weights
Criterion Examples

Average Activation Magnitude

Result: Smaller, Dense Matrices

Pros: Easier Inference Speedups

Cons: Coarser Granularity, Potential Accuracy

Pruning Technique: Importance-Based

1. Magnitude-Based Pruning Mechanism: Use Metrics Beyond Magnitude Effect on Loss (Taylor, OBD/O

General Pruning Process

2. Importance-Based Pruning < Examples of Importance Metrics < Activation Analysis (Frequency, Variance)

Technigues for Identification & Remowval

3. lterative Pruning - Goal: Sophisticated Element Selection Gradient Analysis

. Related Concept: Lottery Ticket Hypothesis

Pruning Technique: Ilterative-Based

1. Magnitude-Based Pruning

2. Importance-Based Pruning

3. Ilterative Pruning

4. Related Concept: Lottery Ticket Hypothesis

Process Schedule/Approach

Mechanism: Repeat [Prune -> Fine-tune]

Goal: Reach Target Sparsity Gradually

Benefit: Better Accuracy for Sparsity

Trade-off: More Time-Consuming

Pruning Technique: Lottery Ticket Hypothesis

1. Magnitude-Based Pruning

2. Importance-Based Pruning

3. lterative Pruning

4. Related Concept: Lottery Ticket Hypothesis

Underlying Idea: Sparse "Winning Ticket' Subnetworks

Subnetwork Property: Matches Full Performance (From Original Init)

Pruning Connection: Magnitude Pruning to Uncover Subnetworks

Implication: Inherent Network Sparsity

Knowledge Distillation for Edge

Teacher Model

D

Large, high-accuracy model with complex capabilities

Knowledge Transfer

®

Soft targets encoding learned relationships

Student Model

1%

Lightweight model for edge deployment

Knowledge distillation accelerates inference by transferring capabilities from comprehensive teacher models to lightweight
student models engineered specifically for edge environments. This approach allows small models to benefit from the learning
of much larger networks.

Rather than simply training on hard labels, student models learn from the probability distributions of teacher models, capturing
nuanced relationships between classes and enabling better generalization despite their reduced capacity.

Knowledge Distillation: Based on Type
Transferred

Focus: Matching output layer (logits)
Mechanism: Uses 'soft labels'
Response-Based Distillation

Benefit: Richer information than hard labels

Example: 8.4x parameter reduction (image), 91.2% quality

Based on Knowledge Type Transferred

Based on Training Strategy
Focus: Matching intermediate layer activations

Feature-Based Distillation Mechanism: Encourages similar internal representations

Example: 11.3x smaller text models, 93.7% teacher performance

Knowledge Distillation: Based on Training
Strategy

Mechanism: Pre-trained teacher trains student
Offline Distillation (Direct)

Note: Most common implied scenario

Online Distillation Mechanism: Teacher and student trained simultaneously

Based on Knowledge Type Transferred

Based on Training Strategy Mechanism: Model distills from itself

Self-Distillation

Example: Deeper layers teach shallower

Mechanism: Uses intermediate 'teacher assistants'
Flow: Teacher -> Assistant -> Student
Progressive Distillation

Benefit: Bridges large gap effectively

Example: GPT (1.3B to 37M), 4.7% higher quality vs direct

Edge-Optimized Model
Architectures

MobileNets

Depthwise separable
convolutions reduce
computation by 8-9x
while maintaining
reasonable accuracy
for vision tasks.

s

EfficientNet

Compound scaling
method optimizes
width, depth, and

resolution for superior

efficiency-accuracy
tradeoff.

>3
ShuffleNet

Channel shuffling and
grouped convolutions
optimize for devices
with limited
computing resources.

J:

SqueezelNet

Fire modules with
squeeze layers reduce
parameter count while
preserving
performance on
classification tasks.

Purpose-built architectures designed specifically for resource-constrained

environments deliver substantially better performance than simply
shrinking standard models. These specialized architectures incorporate

operations like depthwise separable convolutions that dramatically reduce
computational requirements.

The latest generation of edge-optimized models achieves performance
approaching that of models 5-10x their size through architectural

innovations rather than simply scaling down existing designs.

Case Study: Edge Voice Assistant
08.2% 87.3%

Wake Word Accuracy Command Recognition
False activation rate below 0.5% Across various acoustic environments
Model Size Response Latency
Full waketcommand system footprint End-to-end processing time

Our edge-deployed voice assistant demonstrates how optimization techniques deliver compelling real-world performance. Using

a combination of neural network pruning and 8-bit quantization, we reduced the model footprint by 73% compared to the
baseline while maintaining excellent accuracy.

Knowledge distillation from a larger teacher model enabled our compact architecture to achieve wake word detection accuracy
of 98.2% with a false activation rate below 0.5%. The entire system operates with an end-to-end latency of 85ms, well below the
100ms threshold for perceived real-time interaction.

Key Takeaways & Implementation Roadmap

Establish
Performance Targets

Define clear latency,
accuracy, and resource
budgets for your edge Al
application. Consider both
average and worst-case
scenarios.

Apply Integrated
Optimization

Combine pruning,
quantization, and distillation
techniques rather than
relying on a single approach.
The compound effect delivers
significantly better results.

Test on Target
Hardware

Benchmark on actual
deployment devices, as
emulators often miss critical
performance characteristics.
Profile to identify
bottlenecks.

lterate with Real-
World Data

Continuously refine your
models based on edge-
collected data to adapt to
deployment conditions not
seen during initial training.

Successfully deploying GenAl at the edge requires a systematic approach that considers the entire optimization pipeline. By
leveraging the techniques presented today, you can achieve breakthrough performance metrics on resource-constrained

devices.

Remember that edge Al optimization is an iterative process. Start with establishing clear performance targets, apply integrated
optimization techniques, thoroughly test on target hardware, and continuously refine your models with real-world data. This

methodical approach will help you navigate the unique challenges of edge Al development.

Benchmarking for Consistent Performance

Define Metrics

Establish key performance indicators
including latency, throughput,
accuracy, and energy consumption

Iterate Optimization

Use benchmark results to guide
further refinements of model
architecture and parameters

&

ll

Test Environment

Create standardized testing
procedures that simulate real-world
deployment conditions

Measure Performance

Collect comprehensive metrics across
different hardware targets and
workloads

Systematic benchmarking is essential for validating optimization results and ensuring consistent performance across diverse

deployment scenarios. Our framework includes tools for automated testing across multiple hardware targets and operating

conditions.

Implementation Roadmap

@, Audit Model Requirements

Identify target hardware constraints and performance needs

Prototype Optimization Pipeline

8

Test optimization techniques individually to assess impact

Implement Combined Approach

Integrate pruning, quantization, and distillation in sequence

Deploy and Monitor

q? Release optimized models with telemetry for continuous
improvement

Start your edge Al optimization journey with a comprehensive audit of your model requirements and hardware constraints.
Develop a systematic pipeline that combines multiple optimization techniques, with careful validation at each stage. Implement
a monitoring system after deployment to gather real-world performance data and guide future improvements.

Thank you

