
Edge-Ready GenAI:
Engineering Low-Latency
Solutions for Resource-
Constrained Environments
Welcome to our comprehensive exploration of generative AI deployment in
resource-constrained environments. As enterprises increasingly demand
real-time AI capabilities, understanding how to optimize GenAI for edge
computing becomes critical for developers and engineers.
Today we'll examine systematic approaches to maintain performance
while significantly reducing computational demands, energy
consumption, and latency4opening new possibilities for intelligent edge
applications.
By: Sai Kalyan Reddy Pentaparthi

About me:

Sai Kalyan Reddy Pentaparthi

Principal Engineer Software
ST Engineering iDirect, Inc.

Working on enhancing connectivity through Global IP-Satellite Network Infrastructure
www.linkedin.com/in/saikalyanrp

http://www.linkedin.com/in/saikalyanrp

The Edge Computing Frontier
Limited Computational Resources
Edge devices generally have limited processing power,
memory, and storage compared to centralized cloud
systems.

Energy Constraints
Many edge devices run on batteries or operate under
strict power limits, restricting AI model complexity.

Connectivity Challenges
Edge AI solutions must operate reliably even with
limited or no connection to cloud resources.

Real-time Requirements
Applications often require low-latency responses,
increasing performance demands on edge models.

Edge AI Market Trends
Strong Market Expansion:

The Edge AI accelerator market is growing rapidly with a ��.�%
CAGR.
It is projected to reach $�.�� billion by ����, showing strong
demand for on-device AI.

Key Adoption Drivers:
The need for low latency (��.�% of organizations) to ensure real-
time responses is a primary driver.
Data privacy concerns (��.�%) also encourage local AI processing.

Industry Adapting to Challenges:
Model optimization (used in ��% of deployments) is widely
applied to run complex AI efficiently on constrained edge hardware.

The Edge AI Market
Evolution

1 Current State
Limited GenAI deployment at edge due to resource
constraints

2 Next 12 Months
Increasing adoption of optimized edge AI solutions

3 18-24 Months
Most enterprises requiring real-time edge AI capabilities

4 Beyond 2025
Ubiquitous edge AI with specialized hardware acceleration

Market forecasts indicate we're at an inflection point in edge AI adoption.
The next ��-�� months will witness a dramatic shift as enterprises
increasingly require real-time AI capabilities without the latency penalties
of cloud-dependent architectures.
This transition is being accelerated by advances in hardware acceleration,
model optimization techniques, and the growing necessity for privacy-
preserving local computation.

Edge AI Market Trends
Strong Market Expansion:

The Edge AI accelerator market is experiencing rapid growth (��.�%
CAGR).
Projected to reach $�.�� billion by ����, indicating significant
demand for on-device AI.

Key Adoption Drivers:
Driven primarily by the need for low latency (��.�% of
organizations) for real-time responses.
Data privacy concerns (��.�%) are also a major factor, favoring
local processing.

Industry Adapting to Challenges:
Widespread model optimization (used in ��% of deployments)
shows the market actively working to run complex AI efficiently on
constrained edge hardware.

Hardware Acceleration Solutions

2

Specialized hardware accelerators dramatically improve the performance and energy efficiency of edge AI workloads. Modern
system-on-chips (SoCs) increasingly incorporate neural processing units (NPUs) that deliver an order of magnitude better
performance-per-watt compared to general-purpose CPUs.
These purpose-built accelerators are specifically designed to handle the computational patterns of neural networks, with
optimized datapaths for matrix multiplication and activation functions that dominate AI workloads.

Neural Processing
Units

Dedicated AI accelerators in
modern SoCs

��-��x energy efficiency
vs. CPU
Specialized for common
neural net operations

Edge TPUs
Google's purpose-built edge

accelerators
� TOPS in small form
factor
� W power envelope

Mobile GPUs
Increasingly optimized for AI

workloads
Parallel processing
capabilities
Driver optimizations for
neural networks

FPGA Accelerators
Reconfigurable hardware for

custom workloads
Adaptable to specific
model architectures
Power-efficient for
production deployments

Edge GPU's: Overview

Edge GPU's: Inference Performace

Beyond Physical Hardware

Framework Implementation Options

TensorFlow Lite

ONNX Runtime

PyTorch Mobile

TVM

� �.� � �.�Execution Speed (lower is b... Deployment Complexity (lowe... Hardware Support (higher is...

Selecting the appropriate framework for edge deployment is critical. TensorFlow Lite offers excellent hardware support through
delegations to NPUs and GPUs, while ONNX Runtime provides superior cross-platform model portability and slightly better raw
execution speed for many workloads.
PyTorch Mobile excels in developer experience and deployment simplicity, making it attractive for rapid prototyping. TVM offers
the best performance through deep compiler optimizations but requires significantly more implementation complexity and
expertise to fully leverage its capabilities.

LLM Optimization
Techniques
Key techniques to optimize large language models (LLMs) include:

Quantization (Most crucial technique)�.
Network Pruning�.
Knowledge Distillation�.
Low-Rank Approximation / Factorization�.
Memory Optimizations�.

Our talk will focus on the top � techniques in this list.

Quantization Techniques
Post-Training Quantization

Converting pre-trained model weights
from floating-point (FP��) to lower
precision formats (INT�, INT�) after
training completion.

Minimal development effort
No retraining required
Moderate accuracy trade-off

Quantization-Aware
Training

Incorporating quantization effects
during the training process to minimize
accuracy loss when deploying with
reduced precision.

Higher implementation complexity
Better accuracy preservation
Model learns to compensate for
quantization artifacts

Dynamic Range
Quantization

Adaptively adjusting quantization
parameters based on the statistical
properties of activations during
inference.

Balances accuracy and
performance
Adapts to input characteristics
Lower memory bandwidth
requirements

Precision-Aware
Quantization

Post-Training
Quantization
Simple conversion from FP�� to
INT�/INT� after training is
complete. Minimal accuracy
loss for many models.

Quantization-Aware
Training
Incorporates quantization
effects during training process.
Models learn to compensate for
reduced precision.

Mixed-Precision Deployment
Different precision for different layers based on sensitivity analysis.
Critical layers may retain higher precision.

Quantization dramatically reduces the computational and memory
requirements of neural networks by representing weights and activations
at lower precision. Converting from ��-bit floating point to �-bit integer
can yield �x smaller models with �-�x faster inference.
Advanced techniques like mixed-precision quantization allow for targeted
optimization, preserving full precision only where absolutely necessary
while aggressively quantizing less sensitive network components.

Quantization Technique: PTQ

GPU requirements for Float32 vs Int8 Weights

Quantization Technique: QAT

Quantization Technique: Dynamic Range

Quantization Technique: Mixed Precision

Neural Network Pruning
Techniques

Identify Redundancy
Analyze weight distributions and activation patterns to
locate non-essential parameters
Structured Pruning
Remove entire filters, channels, or neurons for hardware
compatibility
Iterative Magnitude Pruning
Gradually remove small weights while retraining to maintain
accuracy
Sensitivity Analysis
Evaluate impact of pruning on overall model performance

Targeted pruning can reduce model footprints by ��-��% with minimal
accuracy impact. By systematically eliminating redundant parameters, we
create leaner networks that maintain essential performance
characteristics while requiring significantly fewer computational
resources.
Our research shows that iterative pruning combined with fine-tuning
yields the best results, allowing models to adapt to their reduced
parameter space while preserving critical functional pathways.

Pruning Process

Pruning Technique: Magnitude-Based

Pruning Technique: Importance-Based

Pruning Technique: Iterative-Based

Pruning Technique: Lottery Ticket Hypothesis

Knowledge Distillation for Edge

Teacher Model
Large, high-accuracy model with complex capabilities

Knowledge Transfer
Soft targets encoding learned relationships

Student Model
Lightweight model for edge deployment

Knowledge distillation accelerates inference by transferring capabilities from comprehensive teacher models to lightweight
student models engineered specifically for edge environments. This approach allows small models to benefit from the learning
of much larger networks.
Rather than simply training on hard labels, student models learn from the probability distributions of teacher models, capturing
nuanced relationships between classes and enabling better generalization despite their reduced capacity.

Knowledge Distillation: Based on Type
Transferred

Knowledge Distillation: Based on Training
Strategy

Edge-Optimized Model
Architectures

MobileNets
Depthwise separable
convolutions reduce
computation by �-�x
while maintaining
reasonable accuracy
for vision tasks.

ShuffleNet
Channel shuffling and
grouped convolutions
optimize for devices
with limited
computing resources.

SqueezeNet
Fire modules with
squeeze layers reduce
parameter count while
preserving
performance on
classification tasks.

EfficientNet
Compound scaling
method optimizes
width, depth, and
resolution for superior
efficiency-accuracy
tradeoff.
Purpose-built architectures designed specifically for resource-constrained
environments deliver substantially better performance than simply
shrinking standard models. These specialized architectures incorporate
operations like depthwise separable convolutions that dramatically reduce
computational requirements.
The latest generation of edge-optimized models achieves performance
approaching that of models �-��x their size through architectural
innovations rather than simply scaling down existing designs.

Case Study: Edge Voice Assistant

98.2%
Wake Word Accuracy

False activation rate below �.�%

87.3%
Command Recognition

Across various acoustic environments

76MB
Model Size

Full wake+command system footprint

85ms
Response Latency

End-to-end processing time
Our edge-deployed voice assistant demonstrates how optimization techniques deliver compelling real-world performance. Using
a combination of neural network pruning and �-bit quantization, we reduced the model footprint by ��% compared to the
baseline while maintaining excellent accuracy.
Knowledge distillation from a larger teacher model enabled our compact architecture to achieve wake word detection accuracy
of ��.�% with a false activation rate below �.�%. The entire system operates with an end-to-end latency of ��ms, well below the
���ms threshold for perceived real-time interaction.

Key Takeaways & Implementation Roadmap

Establish
Performance Targets
Define clear latency,
accuracy, and resource
budgets for your edge AI
application. Consider both
average and worst-case
scenarios.

Apply Integrated
Optimization
Combine pruning,
quantization, and distillation
techniques rather than
relying on a single approach.
The compound effect delivers
significantly better results.

Test on Target
Hardware
Benchmark on actual
deployment devices, as
emulators often miss critical
performance characteristics.
Profile to identify
bottlenecks.

Iterate with Real-
World Data
Continuously refine your
models based on edge-
collected data to adapt to
deployment conditions not
seen during initial training.

Successfully deploying GenAI at the edge requires a systematic approach that considers the entire optimization pipeline. By
leveraging the techniques presented today, you can achieve breakthrough performance metrics on resource-constrained
devices.
Remember that edge AI optimization is an iterative process. Start with establishing clear performance targets, apply integrated
optimization techniques, thoroughly test on target hardware, and continuously refine your models with real-world data. This
methodical approach will help you navigate the unique challenges of edge AI development.

Benchmarking for Consistent Performance

Systematic benchmarking is essential for validating optimization results and ensuring consistent performance across diverse
deployment scenarios. Our framework includes tools for automated testing across multiple hardware targets and operating
conditions.

Define Metrics
Establish key performance indicators

including latency, throughput,
accuracy, and energy consumption

Test Environment
Create standardized testing
procedures that simulate real-world
deployment conditions

Measure Performance
Collect comprehensive metrics across
different hardware targets and
workloads

Iterate Optimization
Use benchmark results to guide

further refinements of model
architecture and parameters

Implementation Roadmap

Audit Model Requirements
Identify target hardware constraints and performance needs

Prototype Optimization Pipeline
Test optimization techniques individually to assess impact

Implement Combined Approach
Integrate pruning, quantization, and distillation in sequence

Deploy and Monitor
Release optimized models with telemetry for continuous
improvement

Start your edge AI optimization journey with a comprehensive audit of your model requirements and hardware constraints.
Develop a systematic pipeline that combines multiple optimization techniques, with careful validation at each stage. Implement
a monitoring system after deployment to gather real-world performance data and guide future improvements.

 Thank you

