
Edge-Ready GenAI: 
Engineering Low-Latency 
Solutions for Resource-
Constrained Environments
Welcome to our comprehensive exploration of generative AI deployment in 
resource-constrained environments. As enterprises increasingly demand 
real-time AI capabilities, understanding how to optimize GenAI for edge 
computing becomes critical for developers and engineers.
Today we'll examine systematic approaches to maintain performance 
while significantly reducing computational demands, energy 
consumption, and latency4opening new possibilities for intelligent edge 
applications.
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The Edge Computing Frontier
Limited Computational Resources
Edge devices generally have limited processing power, 
memory, and storage compared to centralized cloud 
systems.

Energy Constraints
Many edge devices run on batteries or operate under 
strict power limits, restricting AI model complexity.

Connectivity Challenges
Edge AI solutions must operate reliably even with 
limited or no connection to cloud resources.

Real-time Requirements
Applications often require low-latency responses, 
increasing performance demands on edge models.



Edge AI Market Trends
Strong Market Expansion:

The Edge AI accelerator market is growing rapidly with a ��.�% 
CAGR.
It is projected to reach $�.�� billion by ����, showing strong 
demand for on-device AI.

Key Adoption Drivers:
The need for low latency (��.�% of organizations) to ensure real-
time responses is a primary driver.
Data privacy concerns (��.�%) also encourage local AI processing.

Industry Adapting to Challenges:
Model optimization (used in ��% of deployments) is widely 
applied to run complex AI efficiently on constrained edge hardware.



The Edge AI Market 
Evolution

1 Current State
Limited GenAI deployment at edge due to resource 
constraints

2 Next 12 Months
Increasing adoption of optimized edge AI solutions

3 18-24 Months
Most enterprises requiring real-time edge AI capabilities

4 Beyond 2025
Ubiquitous edge AI with specialized hardware acceleration

Market forecasts indicate we're at an inflection point in edge AI adoption. 
The next ��-�� months will witness a dramatic shift as enterprises 
increasingly require real-time AI capabilities without the latency penalties 
of cloud-dependent architectures.
This transition is being accelerated by advances in hardware acceleration, 
model optimization techniques, and the growing necessity for privacy-
preserving local computation.



Edge AI Market Trends
Strong Market Expansion:

The Edge AI accelerator market is experiencing rapid growth (��.�% 
CAGR).
Projected to reach $�.�� billion by ����, indicating significant 
demand for on-device AI.

Key Adoption Drivers:
Driven primarily by the need for low latency (��.�% of 
organizations) for real-time responses.
Data privacy concerns (��.�%) are also a major factor, favoring 
local processing.

Industry Adapting to Challenges:
Widespread model optimization (used in ��% of deployments) 
shows the market actively working to run complex AI efficiently on 
constrained edge hardware.



Hardware Acceleration Solutions

2

Specialized hardware accelerators dramatically improve the performance and energy efficiency of edge AI workloads. Modern 
system-on-chips (SoCs) increasingly incorporate neural processing units (NPUs) that deliver an order of magnitude better 
performance-per-watt compared to general-purpose CPUs.
These purpose-built accelerators are specifically designed to handle the computational patterns of neural networks, with 
optimized datapaths for matrix multiplication and activation functions that dominate AI workloads.

Neural Processing 
Units

Dedicated AI accelerators in 
modern SoCs

��-��x energy efficiency 
vs. CPU
Specialized for common 
neural net operations

Edge TPUs
Google's purpose-built edge 

accelerators
� TOPS in small form 
factor
� W power envelope

Mobile GPUs
Increasingly optimized for AI 

workloads
Parallel processing 
capabilities
Driver optimizations for 
neural networks

FPGA Accelerators
Reconfigurable hardware for 

custom workloads
Adaptable to specific 
model architectures
Power-efficient for 
production deployments



Edge GPU's: Overview



Edge GPU's: Inference Performace



Beyond Physical Hardware



Framework Implementation Options

TensorFlow Lite

ONNX Runtime

PyTorch Mobile

TVM

� �.� � �.�Execution Speed (lower is b... Deployment Complexity (lowe... Hardware Support (higher is...

Selecting the appropriate framework for edge deployment is critical. TensorFlow Lite offers excellent hardware support through 
delegations to NPUs and GPUs, while ONNX Runtime provides superior cross-platform model portability and slightly better raw 
execution speed for many workloads.
PyTorch Mobile excels in developer experience and deployment simplicity, making it attractive for rapid prototyping. TVM offers 
the best performance through deep compiler optimizations but requires significantly more implementation complexity and 
expertise to fully leverage its capabilities.



LLM Optimization 
Techniques
Key techniques to optimize large language models (LLMs) include:

Quantization (Most crucial technique)�.
Network Pruning�.
Knowledge Distillation�.
Low-Rank Approximation / Factorization�.
Memory Optimizations�.

Our talk will focus on the top � techniques in this list.



Quantization Techniques
Post-Training Quantization

Converting pre-trained model weights 
from floating-point (FP��) to lower 
precision formats (INT�, INT�) after 
training completion.

Minimal development effort
No retraining required
Moderate accuracy trade-off

Quantization-Aware 
Training

Incorporating quantization effects 
during the training process to minimize 
accuracy loss when deploying with 
reduced precision.

Higher implementation complexity
Better accuracy preservation
Model learns to compensate for 
quantization artifacts

Dynamic Range 
Quantization

Adaptively adjusting quantization 
parameters based on the statistical 
properties of activations during 
inference.

Balances accuracy and 
performance
Adapts to input characteristics
Lower memory bandwidth 
requirements



Precision-Aware 
Quantization

Post-Training 
Quantization
Simple conversion from FP�� to 
INT�/INT� after training is 
complete. Minimal accuracy 
loss for many models.

Quantization-Aware 
Training
Incorporates quantization 
effects during training process. 
Models learn to compensate for 
reduced precision.

Mixed-Precision Deployment
Different precision for different layers based on sensitivity analysis. 
Critical layers may retain higher precision.

Quantization dramatically reduces the computational and memory 
requirements of neural networks by representing weights and activations 
at lower precision. Converting from ��-bit floating point to �-bit integer 
can yield �x smaller models with �-�x faster inference.
Advanced techniques like mixed-precision quantization allow for targeted 
optimization, preserving full precision only where absolutely necessary 
while aggressively quantizing less sensitive network components.



Quantization Technique: PTQ



GPU requirements for Float32 vs Int8 Weights



Quantization Technique: QAT



Quantization Technique: Dynamic Range



Quantization Technique: Mixed Precision



Neural Network Pruning 
Techniques

Identify Redundancy
Analyze weight distributions and activation patterns to 
locate non-essential parameters
Structured Pruning
Remove entire filters, channels, or neurons for hardware 
compatibility
Iterative Magnitude Pruning
Gradually remove small weights while retraining to maintain 
accuracy
Sensitivity Analysis
Evaluate impact of pruning on overall model performance

Targeted pruning can reduce model footprints by ��-��% with minimal 
accuracy impact. By systematically eliminating redundant parameters, we 
create leaner networks that maintain essential performance 
characteristics while requiring significantly fewer computational 
resources.
Our research shows that iterative pruning combined with fine-tuning 
yields the best results, allowing models to adapt to their reduced 
parameter space while preserving critical functional pathways.



Pruning Process



Pruning Technique: Magnitude-Based



Pruning Technique: Importance-Based



Pruning Technique: Iterative-Based



Pruning Technique: Lottery Ticket Hypothesis



Knowledge Distillation for Edge

Teacher Model
Large, high-accuracy model with complex capabilities

Knowledge Transfer
Soft targets encoding learned relationships

Student Model
Lightweight model for edge deployment

Knowledge distillation accelerates inference by transferring capabilities from comprehensive teacher models to lightweight 
student models engineered specifically for edge environments. This approach allows small models to benefit from the learning 
of much larger networks.
Rather than simply training on hard labels, student models learn from the probability distributions of teacher models, capturing 
nuanced relationships between classes and enabling better generalization despite their reduced capacity.



Knowledge Distillation: Based on Type 
Transferred



Knowledge Distillation: Based on Training 
Strategy



Edge-Optimized Model 
Architectures

MobileNets
Depthwise separable 
convolutions reduce 
computation by �-�x 
while maintaining 
reasonable accuracy 
for vision tasks.

ShuffleNet
Channel shuffling and 
grouped convolutions 
optimize for devices 
with limited 
computing resources.

SqueezeNet
Fire modules with 
squeeze layers reduce 
parameter count while 
preserving 
performance on 
classification tasks.

EfficientNet
Compound scaling 
method optimizes 
width, depth, and 
resolution for superior 
efficiency-accuracy 
tradeoff.
Purpose-built architectures designed specifically for resource-constrained 
environments deliver substantially better performance than simply 
shrinking standard models. These specialized architectures incorporate 
operations like depthwise separable convolutions that dramatically reduce 
computational requirements.
The latest generation of edge-optimized models achieves performance 
approaching that of models �-��x their size through architectural 
innovations rather than simply scaling down existing designs.



Case Study: Edge Voice Assistant

98.2%
Wake Word Accuracy

False activation rate below �.�%

87.3%
Command Recognition

Across various acoustic environments

76MB
Model Size

Full wake+command system footprint

85ms
Response Latency

End-to-end processing time
Our edge-deployed voice assistant demonstrates how optimization techniques deliver compelling real-world performance. Using 
a combination of neural network pruning and �-bit quantization, we reduced the model footprint by ��% compared to the 
baseline while maintaining excellent accuracy.
Knowledge distillation from a larger teacher model enabled our compact architecture to achieve wake word detection accuracy 
of ��.�% with a false activation rate below �.�%. The entire system operates with an end-to-end latency of ��ms, well below the 
���ms threshold for perceived real-time interaction.



Key Takeaways & Implementation Roadmap

Establish 
Performance Targets
Define clear latency, 
accuracy, and resource 
budgets for your edge AI 
application. Consider both 
average and worst-case 
scenarios.

Apply Integrated 
Optimization
Combine pruning, 
quantization, and distillation 
techniques rather than 
relying on a single approach. 
The compound effect delivers 
significantly better results.

Test on Target 
Hardware
Benchmark on actual 
deployment devices, as 
emulators often miss critical 
performance characteristics. 
Profile to identify 
bottlenecks.

Iterate with Real-
World Data
Continuously refine your 
models based on edge-
collected data to adapt to 
deployment conditions not 
seen during initial training.

Successfully deploying GenAI at the edge requires a systematic approach that considers the entire optimization pipeline. By 
leveraging the techniques presented today, you can achieve breakthrough performance metrics on resource-constrained 
devices.
Remember that edge AI optimization is an iterative process. Start with establishing clear performance targets, apply integrated 
optimization techniques, thoroughly test on target hardware, and continuously refine your models with real-world data. This 
methodical approach will help you navigate the unique challenges of edge AI development.



Benchmarking for Consistent Performance

Systematic benchmarking is essential for validating optimization results and ensuring consistent performance across diverse 
deployment scenarios. Our framework includes tools for automated testing across multiple hardware targets and operating 
conditions.

Define Metrics
Establish key performance indicators 

including latency, throughput, 
accuracy, and energy consumption

Test Environment
Create standardized testing 
procedures that simulate real-world 
deployment conditions

Measure Performance
Collect comprehensive metrics across 
different hardware targets and 
workloads

Iterate Optimization
Use benchmark results to guide 

further refinements of model 
architecture and parameters



Implementation Roadmap

Audit Model Requirements
Identify target hardware constraints and performance needs

Prototype Optimization Pipeline
Test optimization techniques individually to assess impact

Implement Combined Approach
Integrate pruning, quantization, and distillation in sequence

Deploy and Monitor
Release optimized models with telemetry for continuous 
improvement

Start your edge AI optimization journey with a comprehensive audit of your model requirements and hardware constraints. 
Develop a systematic pipeline that combines multiple optimization techniques, with careful validation at each stage. Implement 
a monitoring system after deployment to gather real-world performance data and guide future improvements.



                                     Thank you


