
Network X-Ray Vision:
Harnessing eBPF for Cloud-
Native Observability
Superpowers
Discover how eBPF technology transforms network observability in cloud-
native environments, delivering unprecedented visibility without
performance penalties.

By: Sai Kalyan Reddy Pentaparthi

The Kubernetes Networking
Blind Spot

Invisible
Connections

Service meshes create
complex
dependencies that
remain hidden from
traditional tools.

Limited Visibility

Conventional
monitoring only
captures samples or
aggregates of network
traffic.

Troubleshooting
Challenges

Ops teams struggle to
diagnose issues
without detailed
network insights.

What is eBPF?

Kernel-Level Integration

eBPF embeds observability code
directly into the Linux kernel through a
secure virtual machine.

It extends the original Berkeley Packet
Filter with programmable capabilities.

Surgical Precision

Captures detailed network events at
microsecond resolution without
sampling.

Provides complete visibility without the
overhead of traditional methods.

Safe Execution

Kernel verifier ensures eBPF programs
can't crash or compromise systems.

Enables production-safe observability
at scale.

eBPF vs. Traditional Monitoring
Aspect Traditional Monitoring eBPF-Based Monitoring

Data Collection Sampling at intervals Continuous kernel-level capture

Performance Impact Significant overhead Near-zero performance penalty

Visibility Depth Service-level metrics Packet and system call detail

Implementation Agent deployment Kernel integration

Real-time Analysis Limited by collection interval Microsecond-level events

Real-World Impact

70% Reduction in MTTR

Organizations using eBPF have
dramatically reduced time to
resolve network issues.
Complex incidents now solved
in minutes instead of hours.

Preventative Detection

Teams catch network
anomalies before they impact
users. Real-time visibility
enables proactive response to
degradation signals.

Cost Optimization

Identifying inefficient communication patterns saved one enterprise
over $200,000 in annual cloud networking costs.

Visualizing Service Dependencies
Complete Topology

Automatically discover and map all
service connections across your

infrastructure, including
undocumented relationships missing

from Kubernetes manifests.

Traffic Patterns

Gain insights into actual data flow
volumes and communication
frequencies between services,
revealing bottlenecks and
optimization opportunities.

Dependency Chains

Trace complex multi-hop service
dependencies that span across
namespaces and clusters, providing
end-to-end visibility for
troubleshooting.

Temporal Analysis

Monitor and visualize how service
relationships and communication

patterns evolve over time, enabling
proactive infrastructure management.

Real-Time Anomaly
Detection

Baseline Establishment

eBPF continuously learns normal communication patterns
between services.

Deviation Detection

Identifies abnormal traffic without manual threshold
configuration.

Contextual Alerts

Provides detailed context about affected services and
communication paths.

Automated Response

Triggers remediation workflows based on specific traffic
patterns.

Implementation Approaches
Start Small

Begin with a single cluster and limited scope. Focus on specific use
cases like troubleshooting or dependency mapping.

Select Tools

Choose from open-source options like Cilium, Pixie, or Hubble.
Commercial platforms provide additional features and support.

Enable Kernel Support

Ensure your nodes run Linux kernel 4.18+ for full eBPF
capabilities. Cloud providers typically offer compatible images.

Integrate Workflows

Connect eBPF insights to existing observability platforms
and incident response processes.

Case Study: Financial Services

70% Faster Troubleshooting

Critical payment processing issues resolved in minutes

Complete Visibility

Mapped 200+ interdependent microservices

Automated Remediation

Self-healing for 85% of network anomalies

A global payment processor implemented eBPF-based observability across their Kubernetes platform. They gained
unprecedented visibility into their complex service mesh.

Cost Optimization Benefits

43%
Reduced Egress Costs

By identifying and optimizing cross-
zone traffic patterns

28%
Lower Resource Usage

Through elimination of
unnecessary service

communications

52%
Faster Scaling Decisions

With precise traffic insights driving
right-sizing

Getting Started Today

Learn

Explore eBPF fundamentals through online resources and documentation

Experiment

Deploy open-source tools in dev environment

Measure

Quantify the impact on troubleshooting and optimization

Scale

Expand to production environments with confidence

 Thank you

