
Sai Kumar Bitra

Principal Software Engineer – AT&T

Scaling Observability for Real-Time 
Personalization Engines



Why Observability Matters for Personalization

Personalization drives engagement and revenue: Companies that excel at personalization 
see up to 40% more revenue from those efforts, as users respond to highly relevant content.

Real-time experience, zero room for error: Users expect personalized results in 
milliseconds – delays or failures directly hurt satisfaction and conversions.

Complex ML decisions need validation: Without observability, it’s hard to verify if the 
recommendation engine is doing the right thing at the right time. Lack of insight = lost user 
trust and missed opportunities.

Competitive edge: Telemetry data (metrics, logs, traces) helps continuously improve 
algorithms and user experience, keeping your personalization engine (and product) a step 
ahead of the competition.



Challenges in Observability for Real-Time ML Systems

1

Complex, distributed 
pipelines:

Real-time 
personalization involves 
many components 
(services, data 
pipelines, ML models) 
working in concert. 
Multiple 
interdependent 
microservices can 
create blind spots, 
making it hard to trace 
issues end-to-end.

2

High data volume & 
velocity: 

User interactions 
generate massive, fast-
streaming data. 
Capturing and analyzing 
this telemetry in real 
time without adding 
latency is difficult. An 
observability stack 
must handle scale 
efficiently (millions of 
events).

3

Opaque ML decisions:
ML models can behave 
like “black boxes.” If a 
recommendation is odd 
or wrong, traditional 
monitoring might flag a 
symptom (e.g. low 
click-through) but not 
explain why. Without 
detailed traces or logs 
of model 
inputs/outputs, 
debugging ML behavior 
is slow.

4

Multi-channel user 
journey: 

Users interact via web, 
mobile, etc., and 
personalization logic 
might span online and 
offline processes. 
Correlating events 
across channels and 
systems (batch updates 
vs. live inference) is 
challenging, requiring 
robust context 
propagation for traces.

5

Latency sensitivity:

The observability 
instrumentation itself 
must be lightweight. 
Real-time engines can’t 
afford heavy overhead – 
telemetry collection 
should add minimal 
latency while still 
capturing meaningful 
data.



System 

Architecture 

Overview

Ingestion Pipeline: Captures user events in real time (e.g. clickstream via Kafka 
or Kinesis) and feeds them into a streaming system for model updates. Ensures the 
model sees latest behavior.

Decision Engine: The core personalization service (microservice or function) that 
computes recommendations per request. Integrates the ML model inference and 
business rules into the API flow.

Delivery/API Layer: Exposes personalized content through REST/GraphQL APIs 
(or SDK) to the application. This is the entry point handling high QPS with low 
latency.

Data & Feature Stores: Fast data sources (NoSQL, in-memory caches, feature 
stores) providing user profiles, content info, etc., for real-time decisioning.

Telemetry Sources: Each component is instrumented – API, engine, model, and 
data pipeline emit logs, metrics, and traces. This feeds the Observability Pipeline 
(using collectors/agents) that aggregates data for analysis.

Figure: Representative architecture for a real-time personalization engine. The user’s request flows through an API Gateway to a Decision Engine (recommendation service) 

that calls an ML Model Service and fetches data from a feature store. Meanwhile, user interaction events stream through an ingestion pipeline (e.g. Kafka) into a model update process. 

Telemetry (metrics, logs, traces) is emitted from each component into a centralized observability pipeline.



Scaling Observability in a Real-Time 

Architecture

End-to-end tracing: Implement distributed tracing from the user request through the personalization 
service and back. Every request carries a trace ID through the API, decision engine, model calls, and 
database queries, enabling end-to-end visibility of each personalized response.

Unified instrumentation: Adopt OpenTelemetry (OTel) SDK across services for standard metrics, logs, 
and trace collection. OTel provides vendor-agnostic APIs to instrument code once and export telemetry 
to multiple backends.

High-throughput metrics: Use a time-series DB (e.g. Prometheus) to scrape and store metrics at scale. 
Metrics (QPS, latency, recommendation counts, etc.) are aggregated to avoid overwhelming storage. For 
example, compute percentile latencies and sample fine-grained events.

Log aggregation: Stream logs (JSON structured logs including user/session IDs, model decisions) into a 
central system (ELK stack or cloud logging). Structured logs indexed by request or trace ID allow filtering 
for specific user sessions or error scenarios.

Scalable storage & retention: Employ a back-end that can handle high data volume – e.g. a scalable 
observability platform or data lake for long-term analysis. Ensure retention policies and downsampling 
are in place so historical trends can be analyzed without infinite storage growth.



Key Metrics That Matter

Latency and throughput: Measure how fast and how many recommendations are served. Track 
p95/p99 latency of the personalization API and model inference time. Even small delays can frustrate 
users in real time, so tight SLOs (e.g. <100ms) are common.

Error rates and timeouts: Monitor error rates in the personalization pipeline – e.g. fallback rates 
(when the model fails and a default is used), API 5xx errors, timeouts calling the model or data store. 
Spikes indicate issues in the ML service or data layer.

Engagement metrics: Tie observability to business KPIs. Track user engagement outcomes of 
personalization: click-through rates, conversion rates, dwell time, etc., in real time. A drop in 
engagement might signal a personalization issue (e.g. model drift or bad recommendations) beyond just 
system health.

Model performance indicators: Custom metrics from the ML model itself – e.g. the confidence score 
distribution of recommendations, frequency of each model variant being used, drift metrics comparing 
live input data to training data. These help detect when the model’s quality is degrading.

Resource utilization: Keep an eye on system metrics (CPU, memory of the engine, throughput of Kafka 
topics, queue lengths) to ensure the infrastructure can handle load. Sudden changes could explain 
performance outliers.



Tracing the Personalization Journey

Distributed trace example: When a user visits and gets personalized content, a trace follows the 
request from the frontend API through the decision engine, into the model service and database, and 
back. Each segment (span) of the trace records the duration and result of that step.

OpenTelemetry for tracing: Using OTel, insert trace instrumentation at critical points – e.g. mark a 
span around the “GenerateRecommendations” function, another for “ModelInference”, another for “DB 
Fetch”. These spans then appear in tracing UIs (Jaeger, Zipkin) to visualize the call flow.

Bottleneck identification: Traces help pinpoint where latency comes from. For example, a trace might 
show the API spent 5ms, the decision engine 20ms, but a DB call took 80ms due to a slow query. Such 
insights are hard to get from metrics alone and enable targeted optimization.

Correlating with user actions: Tag traces with user or session IDs (carefully, to avoid high cardinality) 
or experiment IDs. This allows correlating a poor experience (e.g. user saw a stale recommendation) 
with the exact trace of the decision that led to it, providing valuable context for debugging.

Sampling strategy: In high QPS systems, trace every request may be infeasible. Implement trace 
sampling (e.g. sample 1% of requests, or always sample errors). This keeps overhead low while ensuring 
you collect traces for anomaly scenarios and a representative slice of traffic.



Logging for ML Decision-Making

Rich, structured logs: Logging in a personalization engine should capture key inputs and outputs of the 
ML decisions. For each request, log details like user ID, relevant features (age bracket, segment, etc.), 
the recommendations returned, and maybe an explanation score or reason code if available.

Enable root-cause analysis: When something goes wrong (e.g., irrelevant content shown), logs can 
reveal what the model saw. For instance, a log might show “Input user_segment=null” which explains a 
bad default recommendation. These clues in logs are critical for debugging data or logic issues.

Trace-log correlation: Integrate logs with tracing context. Include the trace ID or request ID in every 
log entry. This way, when inspecting a distributed trace, you can jump to the associated logs across 
services for that same request. It provides both high-level flow and detailed event data together.

Anonymize and protect data: Personalization logs can include user data – ensure compliance by 
anonymizing or redacting sensitive info (GDPR concerns). An observability platform should enforce data 
handling policies while still giving engineers enough info to troubleshoot.

Use log levels wisely: For real-time systems, use INFO level to log normal decision info (with sampling 
if needed), WARN for unusual situations (e.g. model fallback used), and ERROR for actual failures. This 
allows alerting on specific log patterns (like “fallback model used too often” or exceptions).



Scaling Observability: Patterns & Best 

Practices

Avoid metric overload: Be mindful of metric cardinality. Rather than a metric labeled with every user 
or item ID (which would explode), use aggregated metrics (e.g. counts by category or percentile 
latency). High-cardinality metrics can overwhelm Prometheus and memory.

Trace and log sampling: As mentioned, sample traces to balance detail vs. cost. Similarly, consider 
logging at high detail only for a sample of requests or when errors occur. This adaptive telemetry 
reduces noise and cost while retaining diagnostic power.

Batching and buffering: Use collectors (like OpenTelemetry Collector or Kafka) to buffer telemetry 
data. For example, batch trace exports and send in chunks, so the application isn’t blocked on sending 
each span. Buffer logs to avoid disk I/O becoming a bottleneck.

Scalable storage & querying: Implement a tiered storage for observability data. Recent data stays in 
fast, queryable stores (for quick troubleshooting), while older data is down-sampled or moved to 
cheaper storage. This ensures the observability platform scales without monstrous costs.

Resilience of observability systems: Treat your monitoring pipeline as a critical part of the system. 
Scale out your metrics and logging backends, and set up alerts on the observability systems themselves 
(e.g. if the log forwarder lags or Prometheus is behind). An observability outage can be especially 
painful during a production incident.



Incident: Observability in Action 

(Debugging Story)

The scenario – silent model drift: Imagine engagement gradually dropped over a week for a personalized 
feed. No single component crashed, but the recommendations became less relevant. Without observability, this 
went unnoticed until business metrics fell significantly.

Detection through metrics and alerts: With a strong observability setup, an alert fired when CTR (click-
through rate) dipped 10% below baseline. At the same time, a custom model drift metric showed the 
distribution of inputs had shifted from training data. This correlation hinted the model was no longer tuned to 
current user behavior.

Using traces to pinpoint impact: Engineers pulled up distributed traces for user sessions with low engagement. 
The traces showed normal latency, but a pattern emerged: many users received a default recommendation path 
(logged in the decision engine spans). This indicated the model was unsure and falling back.

Root cause via logs: By querying logs (filtered by trace IDs from those sessions), the team discovered the 
feature “user_age_bucket” was frequently null for affected users. Upstream, an ETL bug had stopped populating 
that feature for new users – crucial information the model needed. The model’s outputs drifted as a result.

Resolution and takeaways: Thanks to observability, the team identified the root cause in a few hours (versus 
days). They fixed the ETL and retrained the model. Post-mortem showed that prior to their observability tools, a 
similar issue took 3× longer to diagnose. The incident reinforced how metrics tied to business KPIs and detailed 
telemetry make a decisive difference in debugging.



Tools & Stack in Action

OpenTelemetry: The open-source standard for instrumentation – used to collect metrics, traces, and 
logs in a unified way. OTel SDKs were integrated into the personalization microservices, allowing easy 
export of telemetry. This avoids vendor lock-in and ensures compatibility with many backends.

Prometheus & Grafana: Prometheus serves as the metrics backend, scraping instrumented services for 
stats. Grafana provides dashboards and visualizations, from request rates to model latency histograms, 
and even combined views (Grafana can display both Prom metrics and trace data together). Alerts are 
configured in Prometheus (e.g. high error rate) and Grafana (for business metrics thresholds).

Distributed Tracing Systems: Jaeger or Zipkin is deployed for tracing, receiving spans from 
OpenTelemetry. Engineers can open Jaeger’s UI to see a waterfall of a user request trace across all 
services, or use Grafana Tempo for a seamless metrics-to-trace drill-down.

Logging Pipeline: An ELK stack (Elasticsearch, Logstash, Kibana) or cloud log service aggregates the 
structured logs. Kibana dashboards enable searching for specific user IDs or error codes. In this case, logs 
are also integrated with trace IDs – e.g. using Kibana to filter all logs for a given trace.

APM and Advanced Tools: In addition to open-source tools, the team leveraged an APM solution (e.g. 
Dynatrace or DataDog) for features like anomaly detection on metrics and AI-assisted root cause 
analysis. These tools can complement the DIY stack by catching subtle issues (like a sudden change in 
user behavior patterns) automatically.



Tools Enabling Observability at Scale
Purpose: Highlight the actual tools and technologies used across telemetry layers (logs, metrics, traces) in a scalable, ML-powered personalization system.

 Tools Used at Scale

 Instrumentation & Telemetry Collection

•OpenTelemetry (OTel)

Unified standard for metrics, logs, and traces. Widely adopted and vendor-agnostic.

•SDKs integrated into microservices

•Supports trace context propagation and auto-instrumentation

 Metrics Collection & Dashboards

•Prometheus

Time-series DB scraping application metrics (latency, throughput, error rates)

•Grafana

Dashboards visualizing system health, model KPIs, business metrics (e.g., CTR)

 Distributed Tracing

•Jaeger or Grafana Tempo

Visualizes end-to-end traces of user requests across services

•Identify slow spans

•Trace model decisions and database latency

 Log Aggregation & Search

•ELK Stack (Elasticsearch, Logstash, Kibana) or Loki

Structured logs (JSON) searchable by trace/session ID

•Root cause analysis of user journeys

•Cross-service error correlation

 Advanced Monitoring & APM

•Dynatrace, DataDog, or New Relic

Used for:

•Anomaly detection on engagement or latency

•Real-time dashboards across ML, API, and infra layers

 Trace/Log Storage at Scale

•Kafka or OpenTelemetry Collector

Used as a buffering layer for telemetry before storage

•ClickHouse / Parquet on Data Lake

Used for querying long-term observability data and joining with offline features



Platform Impact of Scaled Observability

Dramatic reduction in outages: With robust observability, issues are caught and resolved faster. One case 
study saw mean time to resolution improve by 75% after adopting modern observability practices. Faster 
fixes mean less user impact and higher uptime.

Improved performance and reliability: The team can identify bottlenecks proactively. For example, by 
monitoring latency per component, they optimized a slow database query before it became a customer 
issue. Overall system reliability (measured by error rates and uptime) increased noticeably.

Higher confidence in deployments: Observability data gave developers and stakeholders confidence to 
push updates faster. They know that if a new model or feature causes regressions, they’ll see it in 
dashboards or alerts within minutes. This improved the velocity of experimentation in personalization.

Better alignment with business goals: Because telemetry was tied into engagement metrics, the platform 
team now speaks the same language as product owners. They can demonstrate how a latency improvement 
raised conversion, or how a quick rollback (informed by an alert) saved revenue. Observability became a 
business enabler rather than just an ops tool.

Cost vs. benefit managed: Initially, adding so much instrumentation raised concerns about data volume and 
cost. However, by refining what’s collected (sampling, aggregation), they kept overhead reasonable. The 
insights gained far outweighed the costs – in fact, better efficiency and fewer incidents saved money in the 
long run.



Lessons Learned & Best Practices

Build in observability from Day 1: Don’t bolt on monitoring later – design the personalization system 
with observability in mind. Define key metrics and events upfront (for each new feature or model), and 
instrument as you develop. It’s harder to retrofit once issues occur.

Treat logs, metrics, traces as first-class citizens: All three telemetry types provide unique insights. 
Use all of them in tandem – metrics for high-level health, traces for flow analysis, logs for details. Invest 
in tools that unify these views to avoid data silos.

Design for visibility, not just performance: Sometimes you might choose a slightly less complex design 
because it’s easier to observe. For example, using HTTP calls between services with trace context 
instead of an opaque binary protocol can make troubleshooting easier. Observable architecture is a 
feature, not an afterthought.

Empower the team with data: Train engineers and data scientists to use the observability dashboards 
and tracing tools. Encourage a culture where hypothesis-driven debugging (using telemetry data) is the 
norm. This makes incident response more collaborative and effective.

Iterate and improve: Observability is not “set and forget.” Continuously refine what you monitor. As 
the personalization engine evolves (new models, features), update dashboards and alerts. Periodically 
do game days or incident drills to ensure your telemetry actually helps resolve issues quickly.



Final Thoughts and Call to Action

Observability is product-critical: In a real-time ML environment, monitoring isn’t just an ops concern – 
it directly influences user experience and trust in your product. A personalization engine is only as 
effective as your ability to observe and adjust it in real time.

Trust through transparency: By illuminating the “black box” of your personalization system with 
metrics and traces, you build confidence in the recommendations both internally (for developers, data 
scientists) and externally (for users, through reliability). As one industry example showed, modern 
observability practices not only improved MTTR but also cut costs and boosted user satisfaction.

Take action: Evaluate your current observability maturity. Are you collecting the right data at the right 
points? Consider integrating open standards like OpenTelemetry and setting up a robust pipeline with 
tools like Prometheus and Grafana. Start with a small slice of your system, instrument it, and expand 
from there.

Continuous improvement: Scaling observability is an ongoing journey. Use telemetry insights to drive 
improvements in both the ML models and the system architecture. Every outage prevented or 
performance win discovered via observability is a direct win for your users and your business.

Call to action: Embrace the mindset that if you can’t measure it, you can’t improve it. Bring clarity 
to the complexity of real-time personalization by observing it smarter. Your personalization engine – and 
your users – will thank you for it.



Thank You

Sai Kumar Bitra

https://www.linkedin.com/in/sai-kumar-bitra-a4054121/


	Slide 1
	Slide 2
	Slide 3
	Slide 4: System Architecture Overview
	Slide 5: Scaling Observability in a Real-Time Architecture
	Slide 6: Key Metrics That Matter
	Slide 7: Tracing the Personalization Journey 
	Slide 8: Logging for ML Decision-Making
	Slide 9: Scaling Observability: Patterns & Best Practices
	Slide 10: Incident: Observability in Action (Debugging Story)
	Slide 11: Tools & Stack in Action
	Slide 12: Tools Enabling Observability at Scale
	Slide 13: Platform Impact of Scaled Observability 
	Slide 14: Lessons Learned & Best Practices
	Slide 15: Final Thoughts and Call to Action
	Slide 16: Thank You

