
Python for Passwordless Authentication: Implementing FIDO2 and WebAuthn for

a Secure Future

Abstract

The era of passwords is ending, and passwordless authentication is the future. This
session showcases how Python can be used to implement secure, phishing-resistant
authentication using FIDO2, WebAuthn, and biometric authentication. Attendees will
learn how to build passwordless login systems, integrate hardware security keys, and use
Python to enforce strong authentication policies.

Introduction

With increasing cybersecurity threats, traditional password-based authentication is no
longer sufficient. Passwordless authentication using FIDO2 and WebAuthn ensures a
stronger, more secure way to authenticate users without relying on passwords. Python,
with its robust libraries, allows seamless integration of FIDO2/WebAuthn into
authentication systems.

Key Benefits of Passwordless Authentication

Enhanced Security: Eliminates risks associated with phishing and credential stuffing.

Improved User Experience: No need to remember complex passwords.

Compliance: Meets security standards like NIST, GDPR, and FIDO Alliance
requirements.

Cross-Platform Support: Works with mobile, desktop, and web applications.

Understanding FIDO2 and WebAuthn

What is FIDO2?

• FIDO2 is an open authentication
standard developed by the FIDO
Alliance. It enables passwordless
authentication by leveraging
public-key cryptography.

Key Components of FIDO2

• WebAuthn (Web Authentication
API): A web standard that enables
passwordless authentication via
browsers.

• CTAP (Client to Authenticator
Protocol):** Defines how external
authenticators communicate with
browsers.

How WebAuthn Works

•- User registers with a security key or biometric
authenticator.
•A unique public-private key pair is generated.
•The public key is stored on the server, while the private

key remains securely on the device.

Registration:

•Server sends a challenge to the client.
• Client signs the challenge using the private key.
•Server verifies the signature using the stored public key.

Authentication:

Setting Up FIDO2/WebAuthn with Python

Prerequisites:

• Python 3.7+

• Flask or FastAPI for the backend

• py_webauthn and fido2 libraries

Installation:

Backend Implementation

1. Initializing the WebAuthn Server

2. User registration Flow

3. User Authentication Flow

Running the Server

Testing the Authentication Flow

 Register a User
Use a REST client (e.g., Postman) to send a `POST` request to:

2. Authenticate a User

After registration, test authentication using:

This will verify the user’s credentials and return an authentication success response.

3. Using Security Keys

To test with a security key (e.g., YubiKey, Titan Security Key):

1. Plug in the security key.

2. Use a browser supporting WebAuthn (Chrome, Edge, or Firefox).

3. Follow browser prompts to complete authentication.

User Device Compatibility and WebAuthn Support

WebAuthn is supported on:

• Chrome, Edge, Firefox, and Safari (latest versions)
• Windows Hello, macOS Touch ID, and Android Biometrics
• USB, NFC, and Bluetooth security keys

Testing across devices:

• Use WebAuthn Debugger: https://webauthn.io
• Verify security key support in browser settings

Troubleshooting Common Issues

1. Security key not detected: Ensure the device supports CTAP2.

2. Invalid credentials error: The key might not be registered properly; retry
registration.

3. Browser incompatibility: Make sure WebAuthn is enabled in the browser
settings.

Best Practices for Deployment

• Enforce Multi-Factor Authentication (MFA):Combine WebAuthn with OTP for
added security.

• Use Attestation Properly: Validate authenticators using FIDO Metadata Service.
• Monitor Authentication Attempts:Implement logging for authentication failures.

Conclusion

By leveraging Python to implement FIDO2 and WebAuthn, developers can build a robust
passwordless authentication system that is both user-friendly and highly secure. As cyber
threats evolve, organizations must adopt modern authentication methods to protect users
and data.

