
© TeKanAid

Effortless Secrets Management in Kubernetes:
Streamlining App Deployment with GitOps and
ArgoCD using the HashiCorp Vault Injector

Presenter:
Sam Gabrail

© TeKanAid

Intro to GitOps
with ArgoCD

© TeKanAid

Intro to GitOps with ArgoCD

● ArgoCD is implemented as a Kubernetes

controller which continuously monitors running

applications

● It compares the current, live state against the

desired target state (as specified in the Git repo)

● A deployed application whose live state deviates

from the target state is considered OutOfSync

● ArgoCD reports & visualizes the differences,

while providing facilities to automatically or

manually sync the live state back to the desired

target state

● Any modifications made to the desired target

state in the Git repo can be automatically applied

and reflected in the specified target

environments

Taken from the official docs https://argo-cd.readthedocs.io/en/stable/

© TeKanAid

School App
Introduction

© TeKanAid

School App Introduction

A simple demo app for online courses

© TeKanAid

School App Components

© TeKanAid

School App K8s Output

© TeKanAid

Add Vault to the
School App

© TeKanAid

Add Vault to the School App

© TeKanAid

Kubernetes Auth Method

© TeKanAid

The Vault Agent
Sidecar Injector

Overview

© TeKanAid

Vault Agent Workflow in K8s

© TeKanAid

The Vault Agent Sidecar Injector Overview

● The Vault Agent Injector alters pod specifications to

include Vault Agent containers that render Vault secrets

to a shared memory volume using Vault Agent Templates

● App containers within the pod can consume Vault secrets

from the shared volume without being Vault aware

● The injector is a Kubernetes Mutation Webhook Controller

● It works by intercepting pod CREATE and UPDATE events

in Kubernetes

● The controller parses the event and looks for the metadata

annotation vault.hashicorp.com/agent-inject: true

● If found, the controller will alter the pod specification

based on other annotations present

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

© TeKanAid

Mutation Effects

● Every container in the pod will be configured to mount a shared

memory volume. This volume is mounted to /vault/secrets by

default and will be used by the Vault Agent containers for

sharing secrets with the other containers in the pod

● Two types of Vault Agent containers can be injected: init and

sidecar

● The init container will prepopulate the shared memory volume

with the requested secrets prior to the other containers starting

● The sidecar container will continue to authenticate and render

secrets to the same location as the pod runs

● Using annotations, the init and sidecar containers may be

disabled

Good for
cronjobs

Good for long-
lived containers

© TeKanAid

Vault Agent Config to Render Secrets

● There are two methods of configuring the Vault Agent containers

to render secrets:

○ the vault.hashicorp.com/agent-inject-secret annotation, or

○ a configuration map containing Vault Agent configuration files

● Only one of these methods may be used at any time

● The configuration map can provide more details for

configuration beyond the annotations

© TeKanAid

School App Annotations Example

annotations:

 vault.hashicorp.com/agent-inject: "true"

 vault.hashicorp.com/agent-inject-token: "true"

 vault.hashicorp.com/agent-inject-status: "update"

 vault.hashicorp.com/role: "schoolapp"

 vault.hashicorp.com/secret-volume-path: "/app/secrets/"

Configures Vault Agent to share the
Vault token with other containers in the

pod. This is helpful for Vault aware
apps that need to communicate directly

with Vault but require auto-
authentication provided by Vault Agent

● Full list of Annotations:
https://www.vaultproject.io/docs/platform/k8s/injector/annotations

Blocks further mutations by
adding the value injected to the

pod after a successful mutation.

Will render the Vault token in the
file called: /app/secrets/token

© TeKanAid

Vault Agent
Templates

© TeKanAid

Vault Agent Templates Overview

● Vault Agent uses the Consul Template project to

render secrets

● This is useful for Vault unaware apps

● The app's file system has the secrets dropped in by

Vault

● The app doesn't talk to Vault directly

● All it needs to know is what files to find the secrets in

© TeKanAid

Vault Agent Templates Workflow

© TeKanAid

Vault Agent Templates with Annotations

 annotations:

 vault.hashicorp.com/agent-inject: "true"

 vault.hashicorp.com/agent-inject-token: "true"

 vault.hashicorp.com/agent-inject-status: "update"

 vault.hashicorp.com/role: "schoolapp"

 vault.hashicorp.com/secret-volume-path: "/app/secrets/"

 vault.hashicorp.com/agent-inject-secret-schoolapp-mongodb-username:

"internal/data/schoolapp/mongodb"

 vault.hashicorp.com/agent-inject-secret-schoolapp-mongodb-password:

"internal/data/schoolapp/mongodb"

 vault.hashicorp.com/agent-inject-template-schoolapp-mongodb-username: |

 {{- with secret "internal/data/schoolapp/mongodb" -}}

 {{ .Data.data.schoolapp_DB_USERNAME }}

 {{- end -}}

 vault.hashicorp.com/agent-inject-template-schoolapp-mongodb-password: |

 {{- with secret "internal/data/schoolapp/mongodb" -}}

 {{ .Data.data.schoolapp_DB_PASSWORD }}

 {{- end -}}

Expected Output in Container:
cat /app/secrets/schoolapp-
mongodb-username
schoolapp
cat /app/secrets/schoolapp-
mongodb-password
mongoRootPass

© TeKanAid

Demo

	Introduction
	Slide 1: Effortless Secrets Management in Kubernetes: Streamlining App Deployment with GitOps and ArgoCD using the HashiCorp Vault Injector

	Vault in a GitOps Model with ArgoCD
	Slide 2: Intro to GitOps with ArgoCD
	Slide 3: Intro to GitOps with ArgoCD

	Test Environment Setup
	Slide 4: School App Introduction
	Slide 5: School App Introduction
	Slide 6: School App Components
	Slide 7: School App K8s Output

	Running Vault in Kubernetes
	Slide 8: Add Vault to the School App
	Slide 9: Add Vault to the School App
	Slide 10: Kubernetes Auth Method

	The Vault Agent Sidecar Injector
	Slide 11: The Vault Agent Sidecar Injector Overview
	Slide 12: Vault Agent Workflow in K8s
	Slide 13: The Vault Agent Sidecar Injector Overview
	Slide 14: Mutation Effects
	Slide 15: Vault Agent Config to Render Secrets
	Slide 16: School App Annotations Example
	Slide 17: Vault Agent Templates
	Slide 18: Vault Agent Templates Overview
	Slide 19: Vault Agent Templates Workflow
	Slide 20: Vault Agent Templates with Annotations
	Slide 21: Demo

