
Architectural best practices for large-
scale data systems

Santosh Nikhil Kumar Adireddy

Engineering Lead, ByteDance

Conf42 2024 | March 21 2024 | Online

Storage Architecture & retrieval

Part 1

Gateway

Microservice 1

Microservice 2

User

Where does Storage fit in the data systems

Backend/Data System

LB
HTTP

RPC

RPC

MySQL

NoSQL

write

read

sync

Storage Layer

B-Trees vs QuadTrees vs LSM Trees vs
R-Trees vs Inverted Index

B-Trees:- Distributed email service like gmail, yahoo mail uses B-Trees for PostgreSQL (RDBMS)

Quad-Trees:- Proximity service like yelp uses QuadTrees(MongoDB, PostGIS) for spacial indexing

LSM-Trees (Log structured merge trees):- Services with write-heavy workload use databases with
LSM-Trees (RocksDB). Digital wallet is an example. HDFS and Kafka are other examples

Inverted index:- Information retrieval systems (search engines) like amazon.com elastic search
service and Twitter’s search

http://amazon.com

Why B-Trees in Distributed email service

Efficient indexing: quick lookup, insertion, deletion.
All have O(log n) time complexity

Support for range queues: users often search for
emails with a criteria (from a sender or time range)

Disk-based storage optimization: data on
secondary storage like hard drives(cheaper). B-
Trees structure minimizes the disk I/O operations.

Why Quad-Trees in Proximity service

Parent node = some region in the 2-D map

4 children of parent = 4 quadrants of parent region
Spacial indexing: spacial data organized in
hierarchical structure based on their coordinates

Support for range queues: users search for nearby
places. Prune irrelevant branches (O(log n))

Adaptability to density: In high data density regions,
quad-tree nodes are subdivided. In low data density
regions, nodes are merged.

Why LSM-Trees in write-heavy system

In-memory buffer: new data is added in in-memory
buffer and later flushed to disk, minimizing disk I/O

Compaction mechanism: periodic merging of data
(immutable SS Tables) into single level, optimizing
read performance (no need to lookup many
SSTables)

Tunable performance : buffer size, flush frequency,
compaction thresholds

Why inverted index in search engines

We'll construct an inverted index for these documents :-

Document 1: "The quick brown fox jumps over the lazy
dog."

Document 2: "A quick brown dog jumps over the lazy
fox."

Document 3: "The lazy dog sleeps all day.”

When a search query is submitted, the search engine can
quickly look up the query terms in the inverted index to
identify the relevant documents

Partitioning database:- Secondary
indices

Part 2

Partitioning Secondary index - Local

Novel
books with Author =

Harper

Partition 1

Partition 2

Partition 3

Search key Partition

Novel 1

Science 2

Biography 3

Primary index

Search key Value

Author Harper

Author David

Novel
books with Author =

David

Search key Value

Author Harper

Author David

Search key Value

Author Harper

Author David

Secondary index

Science
books with Author =

Harper

Science
books with Author =

David

Biography books with
Author = Harper

Biography books with
Author = David

Partition 1

Partition 2

Partition 3

User
Microservice

(Aggregates

results from all
partitions)

1. Find all books by David

2. Add a new book by David

Backend
Database/Storage

Partitioning Secondary index - Global

Novel
books with Author =

HarperPartition 1

Partition 2

Partition 3

Search key Partition

Novel 1

Science 2

Biography 3

Primary index

Search key Value

Author Harper

Author David

Novel
books with Author =

David

Global Secondary index

Science
books with Author =

Harper

Science
books with Author =

David

Biography books with
Author = Harper

Biography books with
Author = David

Partition 1

Partition 2

Partition 3

User

Microservice

1. Find all books by David

Backend
Database/Storage

Local secondary
index use case

E-Commerce platform- DB partitioned
by product categories like electronics,
clothing, home goods

Customer wants to view all Sony
products (local secondary index) in
Electronics category

Data is needed from Electronics
partition only

A multi-national company’s employee
database - DB partitioned by country
(USA, UK, Japan)

HR department wants to view all
managers (global secondary index)
across the company regardless of
the country

Data is needed from all/multiple
partitions

Global secondary
index use case

Conflict free replicated datatypes
(CRDTs)

Part 3

Write conflict in Multi-leader replication

User 1

User 2

Shared
google

document

(Title = A, id

= 123)

Leader 1

Leader 2

Follower

Follower

Conflict
resolution

Conflict
resolution

Update page set title
= B where id = 123

Update page set title
= C where id = 123

1

1

2

2

3 success

3 success

4

4

During steps 4 and 5 which are
asynchronous replication, there are
conflicts:-

Step 4, 5: Change id = 123, old = A,
new = B . Can’t change because title is
now C

Step 4, 5: Change id = 123, old = A,
new = C. Can’t change because title is
now B

5

5

Solution: Conflict free replicated datatypes

A family of data structures for
strings, sets, maps, ordered lists,
counters, so on that can be
concurrently edited by multiple
users and they automatically
resolve conflicts

import java.util.concurrent.atomic.AtomicInteger;

public class CounterCRDT {
 private AtomicInteger value;

 public CounterCRDT() {
 this.value = new AtomicInteger(0);
 }

 public void increment() {
 value.incrementAndGet();
 }

 public void decrement() {
 value.decrementAndGet();
 }

 public void merge(CounterCRDT other) {
 int otherValue = other.getValue();
 value.set(Math.max(value.get(), otherValue));
 }

 public int getValue() {
 return value.get();
 }

 public static void main(String[] args) {
 CounterCRDT counter1 = new CounterCRDT(); // Leader 1
 CounterCRDT counter2 = new CounterCRDT(); // Leader 2

 counter1.increment(); // Leader 1 increments by 1
 counter2.increment(); // Leader 2 increments by 1

 // Merge leaders
 counter1.merge(counter2); // Merge changes from leader 2 to leader 1

 System.out.println("Counter value after merging: " + counter1.getValue()); // Output: 2
 }
}

Inside-out vs Outside-in architecture

Part 4

Database Backend
classes

(DAL)

Microservice 1

Microservice 2

APIs

User

User
Interface

Microservices
1 2
3

4 5

User

User
Interface

APIs

Microservice 1

Microservice 2

Microservices

Backend
classes

(DAL)

Database

1 2
3

4 5

55

Inside out architecture

Outside in architecture

Inside out
Push strategy

Forecast the demands of the UI
needs

Predictable and well-known
problem

Monolithic to MicroServices re-
architecture , Domain driven like
banking system

Outside in
Pull strategy

Generate demand through UI

No historical data to predict
the solution to the problem

User-centric design, API driven
development:- E-commerce
platform

