Conf42 2024 | March 21 2024 | Online

Architectural best practices for large-
scale data systems

Santosh Nikhil Kumar Adireddy.
—Nngineering Lead, ByteDance

Part 1

Storage Architecture & retrieval

Where does Storage it in the data systems

LB

HTTP

Gateway

= — B ————— e e ——— S

Backend/Data System

Microservice T »I\/IySQL
RPC -

RPC

Microservice 2

B-Trees vs Quadlrees vs L SM Trees vs
R-Trees vs Inverted Index

® B-Irees:- Distributed email service like gmail, yahoo mail uses

S-[rees for

PostgreSQL (

nib

3MS)

= Quad-Trees:- Proximity service like yelp uses Quadlrees(MongoDB, PostGlS) for spacial indexing

x | SM-Trees (Log structured merge trees):- Services with write-

neavy workload use datalbases with

_SM-Trees (RocksDB). Digital wallet is an example. HDES anc

Kafka are other examples

x |nverted index:- Information retrieval systems (search engines) like amazon.com elastic search

service and Iwitter’s search

http://amazon.com

Why B-Irees in Distributed email service

100 | 155

48 | 50 | 79 128

168

200 270 290‘

299 | | 300 | 320 | 439

Efficient Indexing: quick lookup, insertion, deletion.
All have O(log n) time complexity

Support for range queues: users often search for
emails with a criteria (from a sender or time range)

Disk-based storage optimization: data on
secondary storage like hard drives(cheaper). B-
Trees structure minimizes the disk /O operations.

Why Quad-Trees in Proximity service

= Parent node = some region in the 2-D map
x Spacial Indexing; spacial data organized in
x 4 children of parent = 4 quadrants of parent region hierarchical structure based on their coordinates

® Support for range queues: users search for nearby
places. Prune irrelevant branches (O(log n))

x Adaptability to density: In high data density regions,
guad-tree nodes are subdivided. In low data density
regions, nodes are merged.

(55,80)(80, 90)

Why LSM- Trees In write-heavy system

e \ vermeabie » |n-memory buffer: new datal S addgd lin. in—memow
— el buffer and later flushed to disk, minimizing disk /O
Incoming writes
vAEEINE lavel O ®x Compaction mechanism: periodic merging of data
- (immutable SS Tables) into single level, optimizing
e e —— read performance (No need to lookup many
[223332232323823] [SEEESSESESEEESSJ Level 1 SSTabIes)

|
n lunable performar \ce : buffer size, flush frequer 1ICY
n
oo EooUoNEoDoNoDoNOooNOoOUDDODDEEDDEDODDOODDDOED))
oo oEEEooEDNOEEEDEEEODEEDEDEEDNOREDDEDDEEEDUEEDEN '
oo oo ooEoEODoOEODEDDEDOODEDDDROEDDOBRDEED Levelz COmpaCtIOn threShOldS
I DD DO DD oo RN DEDEDEN NN EDDODDoOooEDENEDEEDDoODDDDEEDEEN
IO D DO OEEEONOEDNDEEDEEEUDEDNDUEEDNEEE DO NDDEDEEDODDRDDE

LSM Tree

Why Inverted index In search engines

x \\e'll construct an inverted index for these documents ;-

Term Documents
= Document 1: "The quick brown fox jumps overthelazy oo TTTT T
dog.” a
i
= Document 2: "A quick brown dog jumps over the lazy brown ;
fox." day
dog y 2,
= Document 3: "The lazy dog sleeps all day.” fox ,
jumps ,
lazy y 2,
OVer .
» \When a search query Is submitted, the search engine can quick |
quickly look up the query terms In the inverted index to Teens

identify the relevant documents

Part 2

Partitioning datalbase:- Secondary
INAICES

Partitioning Secondary index - Local

Search key Value

Partition 1

Author Harper

Author BEWV[e!

Partition 1

Microservice
(Aggregates

Search key Partition

-

SCICIICT

> Novel 1 23 Search key Value DOOKSIWItNTAUTNON=
results from all Partition 2 Maroer
Science 2 | >

p art I.t | on S) Author Harper

Partition 2

®
Biography 3 °
| . Author David
®
°
°
06! R B I I8 - BRI 8L 8 8 8 8 8820888 688 0.8 8- 8 6 6 6. 6 6 6 6 6 6 6 6 66 66 0 6 e 0
PC“’UUOHS © © 06 © 0 0 0 © 0 0 © 0 © 0 © © © © 0 © 0
°
)
; 2 \‘Rnc}rwriv DOOKSEWILL]
”‘ 3 Search key Value A\sjinie)r = ImEineLs)
°
| * | Aduthor Harper Partition 3
°
° \E;hﬂ ramhv POOKSEWITH
S Author BEVe! AUTNO=WaVvId
°
°

Partitioning Secondary index - Global

< Microservice

|

Search key Partition

Novel
Science

Biography

Search key

Author

Author

Value

Harper

BEV[e)

Partition 1

Partition 2

Partition 3

Partition 1

=8 BP< 84 PO @<)8 @< & e)< 0<)0 <0< 0 e (0 0.0 0 .0 0 0 0 0. © O
oCICLICE
POORSIWILLIFAULLTONE
L1l OCT
Partition 2
05-9,0560,'00,-0'0 ,0,°0. 0 -0 0 0,06 6 -6 -0 o6 ¢ o6 o6 o o o o
BP0 MO IE O S PO P01 10 O 9)-0)=< 010)0 "0 1-9)< 0. /010 0 ;-0 0. ;0,-0- 0

\Bﬂvwrcv DOORKSIWITH

AULTOLELI AT UCT

Partition 3

l_;;nvwhv POORSTWITN

AULLIOE=WAVIC

| ocal secondary
INdex use case

x E-Commerce platform- DB partitioned

by product categories like electronics,
clothing, home goods

®x Customer wants to view all Sony

oroducts (local secondary index) in
—lectronics category

x [ata Is heeded from Electronics
partition only

Global secondary
INdex Use case

= A multi-national company’'s employee

database -

DB partitioned by country

(USA, UK, Japan)

®x HR department wants to view all

managers (global secondary index)

across the company regardless of
the country

®x Data is needed from all/multiple
partitions

Part 3

Conflict free replicated datatypes
(CRDTs)

Write conflict iIn Multi-leader replication

Conflict

Update page Set title b

= Bwhereid =123

/ \ Shared

google
document
(Title = A, id
= 123)

Conflict
resolution

Update pageset title
= Cwhere1d=123

During steps 4 and 5 which are
asynchronous replication, there are
conflicts:-

Step 4,5 Change id =123, old = A,
new: =B . Cant change because title is
NOW: C

Step 4, 5: Change id =123, old = A,
new = C. Can’t change because title is
now B

Solution: Conflict free replicated datatypes

java.util.concurrent.atomic.AtomicInteger;

{

AtomicInteger value;

O {

this.value = (DF
ks
O { ‘
| value. increnentndcet) x A family of data structures for
i decremri) strings, sets, maps, ordered lists,
} counters, so on that can be
c 2 other. getvalueO; concurrently edited by multiple
value.set(Math.max(value.get(), otherValue)); »
: users and they automatically
O { ese
} value.getO; resolve contlicts
(String[] args) {
= OF
= OF
counterl.increment();
counter2.increment();
counterl.merge(counter?);
System.out.println(+ counterl.getValue());

Part 4

INside-out vs Outside-in architecture

INnside out architecture

User
Interface

APIs

Crosery

CrOSerVi

APIS

MICTOSEIVICES

Microserv

ICroserVi

User
Interface

INside out Qutside In

x Push strategy ®x Pull strategy
® [Forecast the demands of the Ul ®x (Generate demand through Ul
needs
= No historical data to predict
® Predictable and well-known the solution to the problem
problem
® User-centric design, APl driven
® NMonolithic to MicroServices re- development:- E-commerce
architecture , Domain ariven like platform

banking system

