
Enhancing Security and
Compliance with Policy as
Code (PaC) in Jenkins for
DevOps Pipelines

Automating governance in modern DevOps pipelines to prevent

security breaches before they happen.

By: Sarathe Krisshnan Jutoo Vijayaraghavan

The Challenge: Manual Security is Failing

60%
Security Breaches

Companies reporting breaches due to

misconfigured infrastructure

87%
Manual Errors

Percentage of security issues caused

by human oversight

3.92M
Average Cost

Dollars spent recovering from security

incidents

Traditional manual security reviews cannot keep pace with rapid development cycles. Human error remains the biggest

vulnerability.

What is Policy as Code?

Definition

Machine-readable rules that

automate governance enforcement

throughout your development

pipeline.

Key Formats

JSON

YAML

Rego (OPA)

Benefits

Consistency

Automation

Traceability

PaC Throughout the DevOps Lifecycle

Development

Check code against security

standards and best practices

Build

Validate dependencies and

container configurations

Test

Enforce security testing coverage

requirements

Deploy

Verify infrastructure compliance

before provisioning

Monitor

Detect and alert on runtime policy

violations

Why Jenkins for Policy as Code?

Ecosystem Integration

Works with your existing tools and plugins

Pipeline Flexibility

Inject policy checks at any stage

Community Support

Large user base and extensive documentation

Established Infrastructure

Already deployed in most organizations

Implementing PaC in Jenkins

Store Policies in Git

Keep policies in version-controlled repositories for

tracking changes

Install Policy Engines

Configure OPA, Conftest, or other policy engines as

Jenkins plugins

Define Pipeline Stages

Add policy validation steps in Jenkinsfile at critical

checkpoints

Configure Failure Actions

Determine whether violations stop the pipeline or just

report

Popular Policy Enforcement Tools

Open Policy Agent

General-purpose policy engine using

Rego language. Validates Kubernetes,

Terraform, and more.

Conftest

Utility for testing configuration files

against policy. Perfect for YAML and

JSON validation.

HashiCorp Sentinel

Policy framework embedded in

HashiCorp products. Ideal for

infrastructure governance.

Real-World Policy Examples

Prevent Public S3 Buckets

Reject AWS infrastructure changes that would expose

data storage to the internet.

Enforce Resource Tagging

Require specific metadata tags on all cloud resources

for cost tracking.

Container Security

Block deployments of containers with critical

vulnerabilities or running as root.

IAM Best Practices

Verify identity permissions follow least-privilege

principles.

Sample Jenkins Pipeline with PaC

pipeline {
 agent any
 stages {
 stage('Checkout') {
 steps { checkout scm }
 }
 stage('Policy Check: IaC') {
 steps {
 sh 'conftest test terraform/*.tf'
 }
 }
 stage('Terraform Plan') {
 steps {
 sh 'terraform plan -out=tfplan'
 }
 }
 stage('Policy Check: Plan') {
 steps {
 sh 'terraform show -json tfplan | conftest test -'
 }
 }
 stage('Deploy') {
 when {
 expression { currentBuild.resultIsBetterOrEqualTo('SUCCESS') }
 }
 steps {
 sh 'terraform apply tfplan'
 }
 }
 }
}

Integrating PaC into Development Workflow

Developer Feedback

Provide instant policy validation in IDEs

2
Pull Request Enforcement

Run policy checks during code reviews

Pipeline Gates

Block non-compliant changes from progressing

Compliance Reporting

Generate audit reports for regulatory requirements

Getting Started Today

Step 1: Identify Critical
Policies

Start with your most

important security and

compliance requirements.

Focus on policies that prevent

common security issues.

Step 2: Select Your Tools

Choose policy enforcement

tools that integrate with your

existing stack. Open Policy

Agent works well for most

scenarios.

Step 3: Implement Gradually

Begin with policy checks in non-production environments. Use

"warn-only" mode before enforcing hard failures.

Start small, measure success, and expand your policy coverage over

time. The security benefits compound with each new policy you

implement.

 Thank you

