
ML-Powered Search & Recommendation 101:

From Core Concepts to Scalable Systems
High-level overview; individual topics require in-depth exploration

Sergey Polyashov

Agenda

• Why Search & Recommendation Matter

• Success Metrics: Short-Term vs Long-Term Targets

• High-Level Architecture Overview

• Multi-Stage Retrieval & Ranking Funnel

• Candidate Generation: Efficient Filtering

• Ranking: Approaches

• Ranking: Typical High-Level Architecture

• Ranking: GBDT vs Neural Networks

• Design Principles for Large-Scale NN

• Scaling Gaps: LLMs and Recommender Systems

• Trends in Neural Networks for Recommender Systems

Why Search & Recommendation Matter

• Address Information Overload and Enhancing User Experience

• Surface relevant items from gigantic catalogs with Millions to Billions of objects

• Boost Engagement and Business Metrics

• Drive clicks, conversions, and purchases

• Increase time spent, content consumed, and return visits

• Optimize for long-term value (LTV) with methods like Reinforcement Learning (RL)

• Support product goals, like Discovery Scenario or Search

• Real-World Examples:

• YouTube: 70% of views via recommendations (2018)

• Amazon: 35% of purchases driven by recommendations (2013)

• Netflix: 80% of watched content via algorithmic recommendations (2017)

Success Metrics: Short-Term vs Long-Term Targets

Short-Term Targets:

Definition:

• Immediate user actions

Specific:

• Easy to track.

• Fast feedback loop

• Can lead to overfitting to short-term interest

Examples:

• Clicks

• Dwell time

• Add to cart / Purchase

• Engagement in next session

Long-Term Targets:

Definition:

• Satisfaction and retention over time

Specific:

• Better reflects user value

• Encourages exploration and diversity

• Harder to measure and optimize directly

Examples:

• User retention / Return visits

• Subscription continuation

• Diversity of consumed content

• Reduced churn

High-Level Architecture Overview

User

Search

Query

User Profile

Query

Understanding

Real-Time Data

Processor

Logs

Labeling
• Offline: Judges, LLM

• Online Target: CTR, DwellTime, Conv, RL

Serving Layer: Index and Ranker

Candidate Generation
KNN:

• User-Item CF

• Matrix Factorization: ALS

• Random Walks

• NN Embeddings

Inverted Index:

• Key/Inv

• Term-Sharded

Heuristics:

• Popularity

• Freshness

• Subscriptions

• Categories

• User History

Feature Generation
Counters:

• User, Query, Item

• User-Item, Query-Item

• Histograms

• Content-based

• Contextual

• Behavioral

• Time Exp Decay

Models based score:

• Linear models

• NN: DSSM, BERT

Models & Business Rules
Multi-Stage Models:

• L1 (top10000). Small. CPU

• L2 (top1000). Mid. CPU

• L3 (top50) Heavy CPU-GPU

Multi-Target:

• Model: p(relevance)

• Model: p(click | shown)

• Model: p(conversion)

Re-Ranking rules:

• Diversity: MMR, DPP

• Exploration: Thompson

Sampling

Cold Start
Items

Training Pipeline: Labeling, Training

Metrics and Experimentations

Training
• Full Retraining

• Active Learning

• Online Learning

Offline (Judges, Crowd, LLM)
• P/R@K, AUC ROC

• NDCG with Secondary Aspects

• Defect Rate, Leakage

• Coverage

Online
• CTR, Conv Rate, Time Spent, Bounce Rate

• DAU, Retention, Revenue

• Latency, QPS

Actions

Multi-Stage Retrieval & Ranking Funnel

Serving Pipeline Stages:

• User Profile | Query Understanding

• L0: Candidate Generation and Filtration

• High Recall, Diversity, Freshness, Popularity.

• L1: Pre-Ranking:

• 10k -> 1k best items. (Light Model)

• High Recall, Diversity. Light Model: GBDT, Fast DNN

• L2 + L3: Ranking:

• 1000 -> 50 best items (Heavy Models)

• High NDCG, Diversity. Heavy Models.

• Re-Ranking:

• Business Rules.

User Profile | Query Understanding

Catalog: Millions - Billions

L0: Candidate Generation: Top 10k

L1: Pre-Ranking: Top 1k

L2 + L3: Ranking: Top 50

Re-Ranking

Logging + UI

Candidate Generation: Efficient Filtering

Goal: Select a smaller subset (thousands) of relevant items from the large corpus

Optimization Goal: High Recall, High Diversity, Computationally efficient.

Approaches:

• ANN: Find closest vectors by embeddings

• Libraries: Faiss (Meta), ScaNN (Google). Algos: HNSW (fast), IVF+PQ (less memory)

• Sources of embeddings:

• Collaborative Filtering: User-Item ALS (fast). Issues: Cold start problem

• Content-based: Two-Tower Models (DSSM, BERT-based)

• Random Walk: Discover related items. Useful for: Cold start problems and diversity. A bit outdated.

• Inverted Index: Primarily in search-based candidate selection

• Maps each term (word/key) to a list of documents where it appears

• Each entry may store position, frequency, and/or relevance score

• Scales to Trillions of documents using:

• Term sharding for distributed lookup

• Sorting by relevance (BM25 or better). Top-K trimming to reduce result size efficiently

• Heuristics: Simple, rule-based selection

• Popularity, Recency, Subscriptions, User History, Categories

Ranking: Approaches

Goal: Order the candidates based on relevance and auxiliary objectives.

Optimization Goal:

• Short-Term (Widely Used in Industry): NDCG, MRR, P@K based on Offline Judgements and Historical User Feedback

• Long-Term (Under Research/Adoption): Reinforcement Learning, Policy Learning, Sequence Models.

Approaches:

• GBDT (e.g. XGBoost, LightGBM, CatBoost): interpretable, fast. Widely used in production as final model.

• DNN: DSSM, BERT, Transformer-based models. Often used for ANN selection and as features for GBDT

Challenges:

• Bias: Label bias & position bias in logs (implicit feedback)

• Cold start: sparse user/item history

• Trade-offs: Diversity vs Relevance

• Trade-offs: Reinforcement Learning (RL): Modeling the long-term impact of recommendations

• Exploration vs Exploitation: Balancing relevant items (Exploitation) with Discovery (Exploration)

• Interpretability: Understanding why a recommendation was made. Challenging for complex NN compared to GBDT

• Privacy (Federated Learning): Exploring ways to train models without centralizing sensitive user data.

• Latency: heavy models need optimization or approximation (e.g., distillation, caching)

Ranking: Typical High-Level Architecture

Input Features:
• User features

• Item features

• Interaction features

• Contextual signals

• Score from Light Two-

Tower NN

Multi-Task Heavy DNN:
• P(Relevance)

• P(Click)

• P(Conversion)

GBDT: p(Relevance)

GBDT: p(Click|Shown)

GBDT: p(Conversion|Click)

Final Score

Re-Ranking:
- Diversity

- Exploration

- Busines Rules

Input Features:
• User Profile and History

• Query Profile

• Item Profiles

Ranking: GBDT vs Neural Networks

Gradient Boosted Decision Trees (GBDT)

Widely used in production. Stable.

Pros:

• Works well on structured data

• High interpretability (feature importance)

• Fast training, easy A/B testing and retraining

• Strong baseline, often winning on small data

• Pair-wise, list-wise loss for NDCG

• Low latency

Cons:

• Limited in modeling complex interactions

• Hard to handle sequences, multimodality

• Scales poorly on large datasets

Deep Neural Networks:

Active research and real-world adoption

Pros:

• Explicit and implicit feature interaction modeling

• Support for high cardinality features (embeddings)

• Reuse of Embeddings across models

• End-to-end training on sequences

• Multitasking and Transfer learning

• Better scalability on data and parameters

Cons:

• Computationally expensive (latency, inference, training)

• Hard to debug and interpret

• Hallucinations, biases and fairness issues.

• Difficult to fine-tune incrementally

• Sensitive to input noise or prompt changes

Hybrid architectures are common in large-scale pipelines.

Design Principles for Large-Scale NN

• Late Fusion & Bi-Encoder:

• Separate User|Query Tower (online) and Item Tower (offline, precomputed)

• Can preserve 80%+ of profit with 100x speedup

• Contrastive Learning:

• Loss: InfoNCE or NT-Xent. Trains on positive vs hard negative pairs

• Enables dot-product compatible embeddings

• Reported uplift: up to +100% profit in retrieval

• Embedding Compression: Hashing, Quantization, Distillation

• Remove Bias:

• Feedback Loop, Popularity bias, Position bias

• Strategy: add context tower during training, drop at inference

• Hard Negatives Mining: avoid trivial negatives

• Multi-Signal Learning:

• Multi-Modal: text, image, tabular

• Multi-Domain: search queries, watch history, cart events

• Sequential Modeling:

• Transformer Encoder: feed recent events first

User Profile Item Profile

Item Tower: Offline

Late Fusion

User Tower: Online

Features Features Features

Model Heads: CTR, CVR

DCN: Explicit feature crosses

MLP: Implicit interaction modelling

Scaling Gaps: LLMs and Recommender Systems

NLP, Computer Vision (LLMs)

Scales well

• Long input sequences (text, pixels)

• Dense labels & strong supervision

• Pretraining tasks like next-token prediction

• Deep transformer architectures
• Latency-tolerant (seconds ok)

• Scale improves quality (scaling laws)

Recommender Systems

Doesn’t Scale Easily

• Massive embedding tables (billions of user/item IDs)

• Tiny MLPs or towers (milliseconds constraints)

• Short behavioural sequences (3–30 user actions)
• Sparse, implicit feedback (clicks, skips)

• No universal self-supervised task

• Hard latency constraint (<50ms)

• No clear scaling law (limited by bias, noise)

Recommender models hit unique scaling limits:

latency, implicit feedback, massive embeddings, domain-specific bias

not easily solved by just making models deeper or wider.

Trends in Neural Networks for Recommender Systems

• Neural Ranking: Shift from GBDT to DNN: YouTubeDNN, Wide&Deep, DIN, DLRM

• Multi-Stage Pipelines: Bi-encoders for fast recall + DNN for final ranking.

• LLMs: interpret embeddings and generate answers based on vectors alone

• Demystifying Embedding Spaces using LLMs (Google, 2024)

• Model Architecture Trends:

• HyperFormer, HiFormer transformer innovations (DeepMind, 2023)

• Scaling Recommender Systems: Scaling laws have been shown to apply to embeddings, sequences

• Understanding Scaling Laws for Recommendation Models (Meta, 2020)

• Actions Speak Louder than Words: Trillion-Parameter Transducers (Meta, 2024)

• Wukong: Scaling Law for Large-Scale Recommendation (Meta, 2024)

• Sequence Modeling: Moving beyond Next-Item Prediction toward richer modelling: multimodal, lifelong, time-aware

• PinnerFormer (Pinterest, 2022)

• Incorporating Time in Sequential Models (Amazon, 2023)

• Graph NNs: Use user–item graphs to improve recommendations, especially in the long tail.

• Inductive: aggregates neighbor features, leverages content, generalizes to unseen nodes.. PinSage (Pinterest)

• Transductive: learns embeddings from the full graph, suited for fixed node sets. TwHIN (TikTok)

• Reinforcement Learning: RL is used for retention, LTV, long-term goals. Exploration mitigates feedback loops & bias

• UNEX-RL (Kuaishou, 2024)

• Long-Term Value of Exploration (DeepMind, 2024)

• Navigating the Feedback Loop (Netflix, 2023)

Thank you

	Welcome
	Slide 1: ML-Powered Search & Recommendation 101: From Core Concepts to Scalable Systems
	Slide 2: Agenda
	Slide 3: Why Search & Recommendation Matter
	Slide 4: Success Metrics: Short-Term vs Long-Term Targets
	Slide 5: High-Level Architecture Overview
	Slide 6: Multi-Stage Retrieval & Ranking Funnel
	Slide 7: Candidate Generation: Efficient Filtering
	Slide 8: Ranking: Approaches
	Slide 9: Ranking: Typical High-Level Architecture
	Slide 10: Ranking: GBDT vs Neural Networks
	Slide 11: Design Principles for Large-Scale NN
	Slide 12: Scaling Gaps: LLMs and Recommender Systems
	Slide 13: Trends in Neural Networks for Recommender Systems

	End Slides
	Slide 14: Thank you

