
Building Self-Healing Cache
Infrastructure
How Platform Engineering Reduced Latency
While Scaling to Millions
A comprehensive approach to building intelligent caching platforms that have become the

backbone of modern development infrastructure at a large-scale production environment.

Shailin Saraiya

Roku Inc.

The Challenge of Modern Platform
Engineering
The Scale Problem

Digital platforms often face rapid

increases in user engagement, putting

significant strain on traditional

infrastructure approaches:

Database connections reaching limits

during peak traffic

Unpredictable API response times

Engineering teams spending increasing

time on infrastructure issues instead of

building features

Traditional Caching Limitations

Static TTL management with

hardcoded values

Manual scaling requiring reactive

intervention

Limited observability for developers

Inconsistent implementation across

teams

Vision for Self-Healing Infrastructure

Self-Service Platform
Create a platform that developers could use

without deep caching expertise

Intelligent Systems
Implement systems that adapt automatically

to changing traffic patterns

Self-Healing Mechanisms
Build mechanisms that maintain high

availability without human intervention

Comprehensive Observability
Provide visibility that enables data-driven optimization

Effortless Scaling
Scale effortlessly to support our projected growth trajectory

Designing the Intelligent Caching Platform

Database Cache
Query result caching layer

Distributed Cache
Clustered key-value store

Application Cache
In-app memory caching

Edge Cache
Serve content at CDN edge

Key Architectural Principles

Layered Caching Strategy: Multi-tiered approach from edge to database

level

Service Mesh Integration: Enabling automatic service discovery, intelligent

routing, circuit breakers, and retry mechanisms

Event-Driven Architecture: Real-time event streaming for cache

coherency, asynchronous cache warming, and event sourcing for state

reconstruction

Directory-Based Cache Coherency: Sophisticated protocol maintaining

99.9% accuracy

Machine Learning for Smarter
Caching

Predictive Cache Warming
Use ML models to anticipate demand

based on access patterns, popularity

signals, and temporal trends, allowing

caches to be pre-populated before

requests arrive.

Adaptive TTL Management
Replace static expiration rules with

dynamic TTLs that adjust automatically

based on data volatility, access

frequency, and system performance.

Anomaly Detection
Apply ML-based monitoring to detect unusual traffic patterns, cache poisoning

attempts, or signs of performance degradation early.

Key Implementation Patterns
Automated Deployment Pipeline

Infrastructure as Code with declarative configurations

GitOps workflow with automated validation and rollbacks

Zero-downtime deployments with blue-green strategy

@CacheableService

public class SampleService {
 @Cacheable(strategy = "adaptive",
 mlOptimized = true)
 public Entity getEntity(String id) {
 return database.fetchUserEntity(id);
 }

}

Developer-Friendly APIs

Self-Healing Mechanisms

Node failure detection within milliseconds, automatic replica promotion, traffic rerouting without client awareness, and state reconstruction from event logs.

Observability and Monitoring
Comprehensive Dashboards

Key elements of developer-friendly

observability dashboards include:

Hit/miss ratios by service and endpoint

Latency percentiles (p50, p95, p99)

Cache utilization and memory

pressure

Error rates and timeout tracking

Actionable Insights

Monitoring systems can provide

recommendations such as:

"Cache hit rate for endpoint

/api/entity/{id} dropped 15% after

deployment abc123"

"Introducing caching to high-traffic

endpoints can significantly improve

response times."

Impact of Self-Healing Caching

Latency Reduction
Achieved substantial reductions in response

times for high-traffic workloads.

Database Load
Dramatically lowered database query volume

through effective caching strategies.

Cache Hit Rate
Sustained industry-leading cache hit ratios

during peak usage periods.

Global Latency
Improved response times for international users by leveraging geo-distributed cache clusters.

Machine Learning for Caching
(Deep Dive)
Predictive Algorithm
Architecture

Neural Network: Neural networks

applied to historical access patterns

and temporal trends

Reinforcement Learning:

Reinforcement learning for optimizing

cache eviction strategies

Clustering: Clustering techniques to

segment workloads and enable

targeted cache warming

Potential Benefits of ML-Driven
Caching

Higher cache hit ratios compared to

static caching methods

Reduced memory footprint through

more efficient cache management

Improved accuracy in anticipating

traffic surges and workload spikes

Better cost efficiency by optimizing

infrastructure resource utilization

Edge Computing Integration

DatabaseOrigin CacheRegional
CacheEdge CacheUser Request

Common Challenges and Approaches

Cache Coherency at Scale
Techniques such as eventual consistency,

vector clocks, conflict resolution, and read

repair are used to maintain accuracy.

Limited Edge Resources
Adaptive caching strategies, intelligent

eviction policies, and compression

techniques help optimize constrained

environments

Network Partitions
Resilient architectures can enable

autonomous edge operation during

partitions, with state reconciliation and

graceful degradation upon reconnection.

Platform Engineering Best Practices
Self-Service Infrastructure

One-click provisioning and interactive configuration tools

Cost estimation and performance simulation environments

Operational Excellence

Toil reduction through self-healing mechanisms

Automatic escalation for complex issues

Runbook automation and predictive maintenance

Cultural Transformation
Developer Empowerment

Encourage teams to define and manage

their own caching strategies

Abstract infrastructure complexity so

developers can focus on business logic

Operational Mindset
Treat reliability as a shared responsibility

across teams

Promote data-driven decision making and

continuous improvement

Measurement Focus
Aim for high availability targets (e.g., <four

nines= uptime)

Minimize provisioning times

Reduce support overhead through

automation and observability

Business Impact
Faster delivery of new features

Lower infrastructure and operational costs

Improved user experience and engagement

Key Lessons

Start with Developer Experience
Simple APIs trump feature richness, good

defaults matter more than configurability, and

documentation is critical.

Incremental Migration Strategy
Support legacy systems during transition,

provide clear migration paths, and automate

migration where possible.

Observability First
Metrics drive architectural decisions,

visibility enables self-service, and data

validates assumptions.

Challenges Overcome

Technical: Cache stampede prevention, hot key management, memory

fragmentation, network congestion

Organizational: Balancing standardization with flexibility, addressing skills

gaps, overcoming resistance to shared platforms

Future Directions in Caching and
Infrastructure

Near-Term Trends
GraphQL caching optimization

Enhanced ML models for content

prediction

Automated capacity management

Cross-region active-active support

Mid-Term Innovations
Serverless cache functions

Real-time cache analytics and

insights

Novel approaches to cache

validation

Exploration of post-quantum

security techniques

Long-Term Vision
AI-driven infrastructure optimization

Autonomous platform operations

Intent-based cache configuration

Advanced data distribution models

Conclusion and Key Takeaways

Latency Reduction
Achieved substantial reductions in response

times for high-traffic workloads.

Database Load
Dramatically lowered database query volume

through effective caching strategies.

Cache Hit Rate
Sustained industry-leading cache hit ratios

during peak usage periods.

Global Latency
Improved response times for international users by leveraging geo-distributed cache clusters.

Building self-healing cache infrastructure is about creating platforms that empower developers, delight users, and enable business growth while reducing

complexity and operational burden.

