Building Self-Healing Cache
Infrastructure

How Platform Engineering Reduced Latency
While Scaling to Millions

Digital fortress

A comprehensive approach to building intelligent caching platforms that have become the

backbone of modern development infrastructure at a large-scale production environment.

Shailin Saraiya

Roku Inc.

SYSTEM
DEGRADATION
CRITICAL

The Challenge of Modern Platform

Engineering

The Scale Problem

Digital platforms often face rapid
increases in user engagement, putting
significant strain on traditional

infrastructure approaches:

e Database connections reaching limits
during peak traffic

e Unpredictable API response times

e Engineering teams spending increasing
time on infrastructure issues instead of

building features

Traditional Caching Limitations

e Static TTL management with
hardcoded values

e Manual scaling requiring reactive
intervention

e Limited observability for developers

e Inconsistent implementation across
teams

Vision for Self-Healing Infrastructure

Self-Service Platform Intelligent Systems Self-Healing Mechanisms
Create a platform that developers could use Implement systems that adapt automatically Build mechanisms that maintain high
without deep caching expertise to changing traffic patterns availability without human intervention
Comprehensive Observability Effortless Scaling

Provide visibility that enables data-driven optimization Scale effortlessly to support our projected growth trajectory

Designing the Intelligent Caching Platform

Edge Cache
Serve content at CDN edge

Application Cache

In-app memory caching

Distributed Cache

Clustered key-value store

[Database Cache

Query result caching layer

Key Architectural Principles

Layered Caching Strategy: Multi-tiered approach from edge to database

level

Service Mesh Integration: Enabling automatic service discovery, intelligent

routing, circuit breakers, and retry mechanisms

Event-Driven Architecture: Real-time event streaming for cache
coherency, asynchronous cache warming, and event sourcing for state

reconstruction

Directory-Based Cache Coherency: Sophisticated protocol maintaining
99.9% accuracy

Machine Learning for Smarter
Caching

Predictive Cache Warming Adaptive TTL Management
Use ML models to anticipate demand Replace static expiration rules with
based on access patterns, popularity dynamic TTLs that adjust automatically
signals, and temporal trends, allowing based on data volatility, access

caches to be pre-populated before frequency, and system performance.

requests arrive.

Anomaly Detection

Apply ML-based monitoring to detect unusual traffic patterns, cache poisoning

attempts, or signs of performance degradation early.

Key Implementation Patterns

Automated Deployment Pipeline Developer-Friendly APIs

e Infrastructure as Code with declarative configurations ,
@CacheableService
e GitOps workflow with automated validation and rollbacks public class SampleService {
@Cacheable(strategy = "adaptive",
mlOptimized = true)
public Entity getEntity(String id) {
return database.fetchUserEntity(id);
}

}

e Zero-downtime deployments with blue-green strategy

Self-Healing Mechanisms

Node failure detection within milliseconds, automatic replica promotion, traffic rerouting without client awareness, and state reconstruction from event logs.

Observability and Monitoring

Comprehensive Dashboards

Key elements of developer-friendly
observability dashboards include:

¢ Hit/miss ratios by service and endpoint

e Latency percentiles (p50, p95, p99)

e Cache utilization and memory

pressure

e Errorrates and timeout tracking

Actionable Insights

Monitoring systems can provide

recommendations such as:

"Cache hit rate for endpoint
/api/entity/{id} dropped 15% after
deployment abc123"

"Introducing caching to high-traffic
endpoints can significantly improve

response times."

Impact of Self-Healing Caching

Latency Reduction Database Load Cache Hit Rate
Achieved substantial reductions in response Dramatically lowered database query volume Sustained industry-leading cache hit ratios
times for high-traffic workloads. through effective caching strategies. during peak usage periods.
Global Latency

Improved response times for international users by leveraging geo-distributed cache clusters.

Machine Learning for Caching

(Deep Dive)

Predictive Algorithm
Architecture

¢ Neural Network: Neural networks
applied to historical access patterns
and temporal trends

e Reinforcement Learning:
Reinforcement learning for optimizing

cache eviction strategies

e Clustering: Clustering techniques to
segment workloads and enable
targeted cache warming

Potential Benefits of ML-Driven
Caching

e Higher cache hit ratios compared to
static caching methods

e Reduced memory footprint through

more efficient cache management

e Improved accuracy in anticipating
traffic surges and workload spikes

o Better cost efficiency by optimizing

infrastructure resource utilization

Edge Computing Integration

=2 O ? = =

Regional .
User Request Edge Cache & Origin Cache Database
Cache
Common Challenges and Approaches
Cache Coherency at Scale Limited Edge Resources Network Partitions
Techniques such as eventual consistency, Adaptive caching strategies, intelligent Resilient architectures can enable
vector clocks, conflict resolution, and read eviction policies, and compression autonomous edge operation during
repair are used to maintain accuracy. techniques help optimize constrained partitions, with state reconciliation and

environments graceful degradation upon reconnection.

Platform Engineering Best Practices

Self-Service Infrastructure Operational Excellence
e One-click provisioning and interactive configuration tools e Toil reduction through self-healing mechanisms
e Cost estimation and performance simulation environments e Automatic escalation for complex issues

e Runbook automation and predictive maintenance

Cultural Transformation

Developer Empowerment Operational Mindset
e Encourage teams to define and manage e Treat reliability as a shared responsibility
their own caching strategies o) == across teams
| | B % o
e Abstract infrastructure complexity so e Promote data-driven decision making and
developers can focus on business logic continuous improvement

Measurement Focus

Business Impact
p e Aim for high availability targets (e.g., “four

e Faster delivery of new features A ﬂ] nines” uptime)
e Lower infrastructure and operational costs e Minimize provisioning times
e Improved user experience and engagement e Reduce support overhead through

automation and observability

Key Lessons

o =
Start with Developer Experience Incremental Migration Strategy Observability First
Simple APIs trump feature richness, good Support legacy systems during transition, Metrics drive architectural decisions,
defaults matter more than configurability, and provide clear migration paths, and automate visibility enables self-service, and data
documentation is critical. migration where possible. validates assumptions.

Challenges Overcome

Technical: Cache stampede prevention, hot key management, memory Organizational: Balancing standardization with flexibility, addressing skills

fragmentation, network congestion gaps, overcoming resistance to shared platforms

Future Directions in Caching and
Infrastructure

Near-Term Trends Mid-Term Innovations
e GraphQL caching optimization e Serverless cache functions
e Enhanced ML models for content e Real-time cache analytics and
prediction insights
e Automated capacity management e Novel approaches to cache
validation

e Cross-region active-active support
e Exploration of post-quantum
security techniques

Long-Term Vision

e Al-driven infrastructure optimization
e Autonomous platform operations
e Intent-based cache configuration

e Advanced data distribution models

Conclusion and Key Takeaways

Latency Reduction Database Load Cache Hit Rate
Achieved substantial reductions in response Dramatically lowered database query volume Sustained industry-leading cache hit ratios
times for high-traffic workloads. through effective caching strategies. during peak usage periods.
Global Latency

Improved response times for international users by leveraging geo-distributed cache clusters.

Building self-healing cache infrastructure is about creating platforms that empower developers, delight users, and enable business growth while reducing

complexity and operational burden.

