
Maximizing Android App
Efficiency: Proven Techniques
for Seamless Performance
Across Devices
In today's competitive mobile ecosystem, delivering high-performing,
efficient Android apps is crucial for user satisfaction and engagement. This
presentation will provide actionable insights and proven data points to help
you elevate your app's performance metrics and exceed user expectations.

By: Shanu Sahadevan

User Interface Optimization: Delivering a Seamless
Experience
Jetpack Compose

Implementing Jetpack Compose's declarative UI toolkit
reduces recompositions by 20% and memory allocations by
35%. This modern framework efficiently handles state
changes and automatically optimizes UI updates, resulting in
more responsive interfaces and improved frame rates.

Minimizing Layout Hierarchies

Strategic flattening of view hierarchies can reduce rendering
time by 30%. By eliminating nested ViewGroups and using
ConstraintLayout for complex interfaces, apps achieve faster
layout passes and smoother scrolling, directly improving user
satisfaction scores by up to 25%.

Resource Management:
Optimizing App Size and
Loading Times

WebP Image Format
Converting PNG and JPEG
assets to WebP reduces image
sizes by up to 25% while
maintaining visual quality. This
optimization directly impacts
app download times and
storage requirements, with real-
world implementations showing
up to 3MB reduction in APK
size.

Lazy Loading
Implementing lazy loading for
non-critical resources reduces
initial app load times by 40%.
By deferring the loading of
images, heavy UI components,
and secondary features until
needed, apps achieve first-page
render times under 2 seconds
on mid-range devices.

App Size Optimization: Delivering a Lightweight
App
Android App Bundles

Implementing Android App Bundles (AAB) reduces APK size by
up to 35% through dynamic delivery of device-specific
components. This optimization enables faster downloads,
reduces storage requirements, and increases installation
success rates by delivering only the code and resources
needed for each specific device configuration.

ProGuard Optimization

Leveraging ProGuard's advanced code optimization achieves
up to 90% reduction in code size by automatically removing
unused classes, methods, and resources. This optimization not
only minimizes app size but also improves runtime
performance through code obfuscation and optimization of the
Dalvik bytecode.

Memory Management:
Preventing Leaks and
Ensuring Smooth Operation

1 SparseArray
Implementation
SparseArray implementation
reduces memory
consumption by 15%
compared to HashMaps by
eliminating the need for auto-
boxing primitives. This
optimization is particularly
effective when managing
collections with more than
1,000 integer-indexed entries.

2 WeakReferences
WeakReferences enable
efficient garbage collection
by automatically releasing
cached objects when
memory pressure increases.
This prevents memory leaks
in long-lived objects like
Activity contexts, reducing
OutOfMemoryError
occurrences by up to 40% in
production environments.

Network Optimization:
Minimizing Overhead and
Improving Responsiveness

Retrofit Caching
Implementing Retrofit's built-in

caching system reduces network
requests by up to 40% and cuts API
response times from 2.5s to 0.3s on

average. By storing and reusing
valid responses, apps maintain

responsiveness even in poor
network conditions.

OkHttp Caching
Strategic OkHttp caching with

custom interceptors decreases data
usage by 60% and enables offline

functionality. The configurable disk
cache size (recommended 10-

50MB) ensures optimal
performance while respecting

device storage constraints.

Multithreading Techniques: Optimizing
Background Operations

1

Coroutines
Implementing Kotlin Coroutines for asynchronous

operations reduces UI thread blocking by 25%, enabling
smooth animations and responsive user interactions even

during intensive network calls and image processing tasks.

2

Room Database
Integration of Room Database with suspend functions
improves data operations efficiency by 30%, allowing

seamless background data pagination, real-time updates,
and cached offline access while maintaining consistent

frame rates.

Battery Efficiency: Extending
Battery Life and Reducing
Power Consumption

1

Reduce Wake Locks
Implementing smart wake lock management reduces battery

drain by 50%, with automated release patterns and strict
timeout controls preventing unintended background

processes from keeping devices awake.

2

Optimize Task Scheduling
Batching network requests and deferring non-critical

background operations to idle periods reduces CPU wake-
ups by 40%. Using JobScheduler and WorkManager APIs

ensures tasks run only when devices are charging or on Wi-
Fi.

Android Studio Profiler: Identifying and Resolving
Performance Bottlenecks

1

CPU & Memory Monitoring
Monitor real-time CPU usage, memory allocation, and thread activity to identify
critical performance bottlenecks.

2
Data-Driven Investigation
Leverage CPU sampling, memory heap dumps, and network request
analysis to pinpoint specific issues across device configurations.

3

Targeted Optimization
Implement focused improvements based on profiler insights,
reducing app load times by up to 40% and memory
consumption by 30%.

Key Takeaways and Next Steps
By implementing the techniques discussed in this presentation, you can significantly improve the performance of your Android
apps, enhancing user satisfaction and driving engagement. Remember to constantly measure and analyze your app's performance
using tools like Android Studio Profiler to identify areas for further optimization.

 Thank You

