
Mobile Application
Security Assessments
Automation
In today's digital landscape, ensuring the security of mobile
applications is paramount. As mobile app usage explodes, so do the
threats against them. This presentation explores the powerful
combination of MobSF (Mobile Security Framework) and Jenkins
pipelines to automate mobile app security assessments, providing a
robust defense against potential vulnerabilities.

by Sheshananda Reddy KandulaSK

Whoami
 @Sheshananda Reddy Kandula

15 years in Application Security

Agenda
Introduction to Mobile Application Security

Mobile OWASP Top 10 Risks

SAST and DAST

MobSF

Installation

Docker

API Usage

Jenkins

Jenkins features

Triggering the scans

Conclusion

Introduction to Mobile
Application Security
• Mobile apps are vulnerable to security threats (e.g., malware, insecure
storage, etc.).

• Regular assessments are critical but can be time-consuming.

• Automation bridges the gap between development speed and security
compliance.

Mobile OWASP Top 10 Risks

https://owasp.org/www-project-mobile-top-10/

https://owasp.org/www-project-mobile-top-10/

SAST vs DAST
What is SAST?

Definition: Static Application Security Testing (SAST) analyzes the source code, binary, or bytecode of mobile
applications (Android/iOS) to identify vulnerabilities early in development without executing the application.

Methodology:

Code Review: 1.

Scan source code for insecure coding practices (e.g., hardcoded credentials, insecure cryptography).

2. Configuration Analysis:

Analyze mobile app configurations (e.g., AndroidManifest.xml, Info.plist).

3. Data Flow Analysis:

Trace sensitive data (e.g., PII) to ensure it’s stored and transmitted securely.

4. Dependency Scanning:

Identify vulnerabilities in third-party libraries and SDKs.

5. Security Rules and Policies:

Compare code against security guidelines (e.g., OWASP Mobile Top 10).

MobSF
Installation

Docker

API Usage

Link

Installation:

docker pull opensecurity/mobile-security-framework-mobsf:latest

docker run -it --rm -p 8000:8000 opensecurity/mobile-security-framework-mobsf:latest

MobSF

The Power of MobSF
Static Analysis
MobSF delves into the application's source code,
configurations, and permissions, uncovering
vulnerabilities like insecure storage, hardcoded secrets, or
excessive permissions.

Dynamic Analysis
MobSF scrutinizes the application's runtime behavior,
identifying risks like insecure API calls, unencrypted
traffic, and data leakage, providing a complete picture of
the app's security posture.

MobSF: Your Mobile Security Swiss Army
Knife
API Support
MobSF's API enables seamless integration with
automation tools like Jenkins, empowering you to trigger
scans, retrieve reports, and manage the entire security
assessment process programmatically.

Comprehensive Reporting
MobSF generates detailed, insightful reports, providing
actionable information on identified vulnerabilities, their
severity, and potential mitigation strategies.

Jenkins
Download War file WAR file

run the following command: java -jar jenkins.war --enable-future-java

https://www.jenkins.io/doc/book/installing/war-file/

The Need for Automation
1 Efficiency Gains

Automating security
assessments streamlines the
process, freeing up valuable
developer time for addressing
critical security issues.

2 Consistency and
Scalability
Automated testing ensures
consistent security evaluation
across all builds, regardless of
developer or project,
guaranteeing a high standard
of security across your mobile
app portfolio.

3 Early Detection and
Mitigation
Identifying vulnerabilities early
in the development cycle allows
for timely remediation,
significantly reducing costs and
minimizing the risk of
vulnerabilities reaching
production.

Integrating MobSF with Jenkins Pipelines

1

Pipeline Configuration
Configure Jenkins to automatically trigger

MobSF scans whenever a new build
(APK/IPA) is generated, ensuring

continuous security evaluation
throughout the SDLC.

2

Security Scan Execution
MobSF performs both static and dynamic

analysis on the uploaded build, conducting
a comprehensive security assessment for

each new release.

3

Threshold Policies
Jenkins monitors MobSF scan results and

implements pre-defined security
thresholds, halting builds that contain

critical vulnerabilities and preventing the
release of insecure apps.

4

Report Generation and
Notifications

MobSF generates detailed reports, which
are processed by Jenkins and

automatically disseminated to
stakeholders via email or issue trackers

like Jira, enabling rapid feedback and issue
resolution.

Jenkins Job
pipeline {
agent any
environment
{
 MobSFAPIKey = credentials('MobSFAPIKey') MobSFURL = 'http://localhost:8000/'
}
options {
 timestamps()
}
triggers{
 cron('@midnight')
}
stages {
 stage("Download the APK or IPA File:"){
 steps {
 script{
 echo "Downloading the APK or IPA File:"
 echo "MobSF URL:"+MobSFURL
 fileDwld="wget -q -O AndroGoat.apk http://localhost:8888/AndroGoat.apk"
 echo "${env.WORKSPACE}"
 sh "rm -f ${env.WORKSPACE}/AndroGoat.apk"
 sh(script: fileDwld, returnStdout: false)
 echo("File Downloading completed")
 }
 }
 }

 stage("Starting MobSF Scan:"){
 steps {
 script{
 echo "Initiating the MobSF Scan:"
 // scan = "curl -X POST --url http://localhost:8000/api/v1/tasks -H \"Authorization:
d27147caa4ee637d022e501d7b475cf3d55e0cf57ca05eeea55e1f4e37fc872a\""

 //Display Recent Scans API

 uploadFile = "curl -F 'file=@${env.WORKSPACE}/AndroGoat.apk' \"http://localhost:8000/api/v1/upload\" -H
\"Authorization: d27147caa4ee637d022e501d7b475cf3d55e0cf57ca05eeea55e1f4e37fc872a\" -o response.json"
 response=sh(script: uploadFile, returnStdout: true).trim()
 echo response

 hash = sh(script: "cat response.json | jq -r '.hash' ", returnStdout: true).trim()
 echo hash

 scan="curl -X POST --url http://localhost:8000/api/v1/scan --data \"hash="+hash+"\" -H \"Authorization:
d27147caa4ee637d022e501d7b475cf3d55e0cf57ca05eeea55e1f4e37fc872a\""
 echo "Scan command.."+scan
 response1=sh(script: scan, returnStdout: true)
 echo "Scan Started..."
 echo response1

 // scorecard="curl -X POST --url http://localhost:8000/api/v1/scorecard --data \"hash="+hash+"\" -H
\"Authorization: d27147caa4ee637d022e501d7b475cf3d55e0cf57ca05eeea55e1f4e37fc872a\" -o response.json "
 scorecard="curl -X POST --url http://localhost:8000/api/v1/scorecard --data \"hash="+hash+"\" -H
\"Authorization: d27147caa4ee637d022e501d7b475cf3d55e0cf57ca05eeea55e1f4e37fc872a\" "
 echo "Scorecard: "+scorecard
 response2=sh(script: scorecard, returnStdout: true)
 echo "Scorecard ..."+response2

 report="curl -X POST --url http://localhost:8000/api/v1/download_pdf --data \"hash="+hash+"\" -H
\"Authorization: d27147caa4ee637d022e501d7b475cf3d55e0cf57ca05eeea55e1f4e37fc872a\" -o report.pdf"
 echo "report:"+report
 resposne3=sh(script: report, returnStdout: true)
 echo "Report is downloaded"
 }
 }
 }
}
}

Benefits of Automating
Mobile Security
Assessments

Efficiency and Focus
Automation significantly
reduces manual effort by up
to 60%, allowing security
teams and developers to
focus on high-priority issues
and strategic initiatives.

Scalability and
Consistency
Automate security testing
for a multitude of mobile
applications concurrently,
ensuring consistent security
evaluation across your entire
portfolio.

Improved Security
Posture
Early identification and
remediation of vulnerabilities
during development
strengthens your overall
security posture, minimizing
the risk of exploitation in
production.

Developer
Empowerment
Provide developers with
comprehensive, actionable
insights through detailed
reports, empowering them to
address security flaws
independently and
contribute to a more secure
development process.

Key Takeaways

Automate Security
Assessments
Integrate MobSF with Jenkins to
automate security testing,
ensuring consistent, efficient
evaluation for each build.

Address Security Flaws
Early
Catch vulnerabilities early in the
development lifecycle, reducing
costs and improving the security
of your mobile applications.

Embrace DevSecOps
Incorporate security as an
integral part of your
development practices, fostering
a culture of shared responsibility
and proactive security measures.

MobSF: A Key Component of Your Mobile
Security Arsenal

1 Static Analysis

2 Dynamic Analysis

3 API Integration

4 Comprehensive Reporting

MobSF offers a powerful suite of security assessment capabilities, enabling you to comprehensively evaluate the
security of your mobile applications throughout the development lifecycle. Its API facilitates seamless integration with
Jenkins, automating the assessment process for increased efficiency and scalability.

Jenkins Pipelines: Driving
Automation

1
Trigger MobSF Scans

2
Execute Security Analysis

3
Monitor Results and Enforce Thresholds

4
Generate and Share Reports

Jenkins pipelines provide the framework for orchestrating the
automated security assessment process, ensuring seamless
integration with MobSF, continuous evaluation of builds, and timely
notification of any vulnerabilities identified.

Embracing Continuous
Security Improvement

1
Identify

Identify vulnerabilities through
automated security assessments

with MobSF and Jenkins.

2
Remediate

Address vulnerabilities promptly,
prioritizing critical issues and

ensuring timely patching.

3
Test

Retest the application after
remediation to confirm the

effectiveness of the fixes and
ensure no new vulnerabilities

have been introduced.

4
Improve

Continuously improve security
processes, incorporating

feedback and lessons learned
from previous assessments.

Conclusion: Securing the
Mobile Future
By leveraging the power of MobSF and Jenkins pipelines,
organizations can effectively automate mobile application security
assessments, ensuring robust, consistent security testing throughout
the SDLC. This approach strengthens application security, empowers
development teams, and supports the secure delivery of mobile
applications in a rapidly evolving digital landscape. Embrace
automation and DevSecOps principles to secure the mobile future.

