Mobile Application
Security Assessments
Automation

In today's digital landscape, ensuring the security of mobile
applications is paramount. As mobile app usage explodes, so do the
threats against them. This presentation explores the powerful
combination of MobSF (Mobile Security Framework) and Jenkins
pipelines to automate mobile app security assessments, providing a
robust defense against potential vulnerabilities.

€ by Sheshananda Reddy Kandula




Whoami

@Sheshananda Reddy Kandula

15 years in Application Security

Sheshananda Reddy Kandula
Sr Security Engineer at Adobe | AppSec |
Product Securtiy | OSWE | OSCP | CISSP




Agenda

« Introduction to Mobile Application Security
« Mobile OWASP Top 10 Risks
« SAST and DAST
« MobSF
o Installation
o Docker
o API Usage
« Jenkins
o Jenkins features
o Triggering the scans

o Conclusion



Introduction to Mobile
Application Security

- Mobile apps are vulnerable to security threats (e.g., malware, insecure
storage, etc.).

- Regular assessments are critical but can be time-consuming.

- Automation bridges the gap between development speed and security
compliance.



Mobile OWASP Top 10 Risks

M10: Insufficient
Cryptography

M9: Insecure
Data Storage

Mg: Security
Misconfiguration

MT7: Insufficient
Binary
Protections

https://owasp.org/www-project-mobile-top-10/

M1: Improper
Credential
Usage

OWASP

Mobile
Top 10
2024

M6&: Inadeguate
Privacy Controls

M2: Inadequate
Supply Chain
Security

M3: Insecure
Authentication/A
uthorization

M4&: Insufficient
Input/Output
Validation

M5: Insecure
Communication


https://owasp.org/www-project-mobile-top-10/

SAST vs DAST

What is SAST?

Definition: Static Application Security Testing (SAST) analyzes the source code, binary, or bytecode of mobile
applications (Android/iOS) to identify vulnerabilities early in development without executing the application.

Methodology:
1. Code Review:
Scan source code for insecure coding practices (e.g., hardcoded credentials, insecure cryptography).
2. Configuration Analysis:
Analyze mobile app configurations (e.g., AndroidManifest.xml, Info.plist).
3. Data Flow Analysis:
Trace sensitive data (e.g., PII) to ensure it’s stored and transmitted securely.
4. Dependency Scanning:
Identify vulnerabilities in third-party libraries and SDKs.
5. Security Rules and Policies:

Compare code against security guidelines (e.g., OWASP Mobile Top 10).



MobSF

. Installation
« Docker
« API Usage

Link
Installation:
docker pull opensecurity/mobile-security-framework-mobsf:latest

docker run -it --rm -p 8000:8000 opensecurity/mobile-security-framework-mobsf:latest

[2025-01-14 00:32:28 +0000] [1] [INFO] Starting gunicorn 23.0.0

[2025-01-14 00:32:28 +0000] [1] [INFO] Listening at: http://0.0.0.0:8000 (1)
[2025-01-14 00:32:28 +0000] [1] [INFO] Using worker: gthread

[2025-01-14 00:32:28 +0000] [118] [INFO] Booting worker with pid: 118

[INFO] 14/Jan/2025 00:32:28 - Loading User config from: /home/mobsf/.MobSF/config.py
[INFO] 14/Jan/2025 00:32:52 -

RVAR || Y | L

il - o
LIV I/ NN N - ANNZZ 0 . )
L P EN A SE AN A 1T s
I

R i O P fl_l_ L R | ST R

[INFO] 14/Jan/2025 00:32:52 - Author: Ajin Abraham | opensecurity.in
[INFO] 14/Jan/2025 00:32:52 -



MobSF

] [ ] == Mobile Security Framework X aF ~

%, G A NotSecure 0.0.0.0:8000 * 0 B O ©

SCANS DYNAMIC ANALYZER A APl ABOUT O ~ _

€ Upload & Analyze

Drag & Drop anywhere!

RECENT SCANS | DYNAMIC ANALYZER | AP| | DONATE @ | DOCS | ABOUT

© 2025 Mobile Security Framework - MobSF v4.2.9




The Power of MobSF

Static Analysis Dynamic Analysis

MobSF delves into the application's source code, MobSF scrutinizes the application's runtime behavior,
configurations, and permissions, uncovering identifying risks like insecure API calls, unencrypted
vulnerabilities like insecure storage, hardcoded secrets, or traffic, and data leakage, providing a complete picture of

excessive permissions. the app's security posture.



MobSF: Your Mobile Security Swiss Army
Knife

API Support Comprehensive Reporting

MobSF's API enables seamless integration with MobSF generates detailed, insightful reports, providing
automation tools like Jenkins, empowering you to trigger actionable information on identified vulnerabilities, their
scans, retrieve reports, and manage the entire security severity, and potential mitigation strategies.
assessment process programmatically.

[ O ] =m AP|Docs x ar ~

« G A MNotSecure 0.0.0.0:8000/api_docs * 02032 O

RECENT SCANS STATIC ANALYZER DYNAMIC ANALYZER API DONATE @ DOCS ABOUT o- Search Q

API Docs

APl Key: 43055ac6704dcd09372701e58c381e903ed1846b0c4943ce466T0463fdal2@dcs

Static Analysis

1.api/v1/upload - Upload a File
2.api/v1/scan-Scan aFile
3.api/vl/scan_logs - Display Live Scan Logs
4.api/vl/search - Search a Scan
5.api/vl/scans - Display Recent Scans
6.api/vl/tasks - Display Scan Tasks
7.api/vl/delete_scan - Delete a Scan
8.api/vl/scorecard - App Scorecard
9. api/vl/download_pdf - Download PDF Report
10. api/v1/report_json - Generate JSON Report
11. api/v1/view_source - View Source Files
12. api/v1/compare - Compare Apps
13. api/v1/suppress_by_rule - Suppress by Rule
14. api/v1/suppress_by_files - Suppress by Files
15. api/v1/list_suppressions - List Suppressions
16. api/vl/delete_suppression - Delete Suppressions

Dynamic Analysis Android

1. api/vl/dynamic/get_apps - Get Apps for Dynamic Analysis
2.api/vl/dynamic/start_analysis - Start Dynamic Analysis
3.api/vl/android/logcat - View Logcat
4. api/vl/android/mobsfy - MobSFy VM/Emulator/Device
5.api/vl/android/adb_command - Execute ADB Commands
6.api/vl/android/root_ca - Install or Remove MobSF Root CA
7.api/vl/android/global_proxy - Set or Unset MobSF HTTP(S) Proxy
8.api/vl/android/activity - Activity or Exported Activity Tester
9.api/vl/android/start_activity - Startan Activity or Exported Activity

10. api/vl/android/tls_tests - TLS/SSL Security Tester

11. api/v1/frida/instrument - Frida Instrument App

12. api/v1/frida/api_monitor - Frida API Monitor

13. api/v1/frida/get_dependencies - Frida Get Dependencies

14, api/vl/frida/logs - Frida View Logs

15. api/v1/frida/list_scripts - Frida List Scripts

16. api/v1/frida/get_script - Frida Get Script

17. api/v1l/dynamic/stop_analysis - Stop Dynamic Analysis

18. api/v1l/dynamic/report_json- Dynamic Analysis JSON report

19. api/v1/dynamic/view_source - Dynamic Analysis View Source




Jenkins

Download War file WAR file

run the following command: java -jar jenkins.war --enable-future-java

& [ ] £ Manage Jenkins [Jenkins] x o

&« G @ localhost:8080/manage/ Tr (“a B o s O

Q Search (3£+K) @F @ Shesha v [3 logout

Dashboard Manage Jenkins

+ New Item Manage Jenkins Q, Search settings /
& Build History

{53 Manage Jenkins System Configuration

O My Views @ System » Tools I Plugins
Configure global settings and Configure tools, their locations and Add, remove, disable or enable
paths. automatic installers. plugins that can extend the

Build Queue v A : ;
functionality of Jenkins.

No builds in the queue.

I:J Nodes o Clouds 7 Appearance
Build Executor Status 02 v Add, remove, control and monitor Add, remove, and configure cloud >4 Configure the look and feel of
the various nodes that Jenkins runs instances to provision agents on- Jenkins
jobs on. demand.
Security

El Security Credentials @ Credential Providers
Secure Jenkins; define who is Configure credentials Configure the credential providers
allowed to access/use the system. and types
Users

Create/delete/modify users that
can log in to this Jenkins.


https://www.jenkins.io/doc/book/installing/war-file/

The Need for Automation

1 Efficiency Gains

Automating security
assessments streamlines the
process, freeing up valuable
developer time for addressing
critical security issues.

Consistency and
Scalability

Automated testing ensures
consistent security evaluation
across all builds, regardless of
developer or project,
guaranteeing a high standard
of security across your mobile
app portfolio.

Early Detection and
Mitigation

Identifying vulnerabilities early
in the development cycle allows
for timely remediation,
significantly reducing costs and
minimizing the risk of
vulnerabilities reaching
production.



Integrating MobSF with Jenkins Pipelines

Pipeline Configuration Threshold Policies
Configure Jenkins to automatically trigger Jenkins monitors MobSF scan results and
MobSF scans whenever a new build implements pre-defined security
(APK/IPA) is generated, ensuring thresholds, halting builds that contain
continuous security evaluation critical vulnerabilities and preventing the
throughout the SDLC. release of insecure apps.
1 2 4

Security Scan Execution

MobSF performs both static and dynamic
analysis on the uploaded build, conducting
a comprehensive security assessment for
each new release.

Report Generation and
Notifications

MobSF generates detailed reports, which
are processed by Jenkins and
automatically disseminated to
stakeholders via email or issue trackers
like Jira, enabling rapid feedback and issue
resolution.



Jenkins Job

pipeline {
agent any
environment

{
MobSFAPIKey = credentials('MobSFAPIKey') MobSFURL = 'http://localhost:8000/'

}
options {
timestamps()
}
triggers{
cron('@midnight’)
}
stages {
stage("Download the APK or IPA File:"){
steps {
script{
echo "Downloading the APK or IPA File:"
echo "MobSF URL:"+MobSFURL
fileDwld="wget -q -O AndroGoat.apk http://localhost:8888/AndroGoat.apk"
echo "${env.WORKSPACE}"
sh "rm -f ${env.WORKSPACE}/AndroGoat.apk"
sh(script: fileDwld, returnStdout: false)
echo("File Downloading completed")

stage("Starting MobSF Scan:")}{
steps {
script{
echo "Initiating the MobSF Scan:"
// scan = "curl -X POST --url http://localhost:8000/api/v1/tasks -H \"Authorization:
d27147caadee637d022e501d7b475cf3d55e0cf57ca05eeea55e1f4e37fc872a\""

//Display Recent Scans API

uploadFile = "curl -F 'file=@${env.WORKSPACE}/AndroGoat.apk' \"http://localhost:8000/api/v1/upload\" -H
\"Authorization: d27147caad4ee637d022e501d7b475cf3d55e0cf57cal05eeea55e1f4e37fc872a\" -o response.json”

response=sh(script: uploadFile, returnStdout: true).trim()

echo response

hash = sh(script: "cat response.json | jq -r .hash'", returnStdout: true).trim()
echo hash

scan="curl -X POST --url http://localhost:8000/api/v1/scan --data \"hash="+hash+"\" -H \"Authorization:
d27147caadee637d022e501d7b475cf3d55e0cf57cal05eeea55e1f4e37fc872a\""

echo "Scan command.."+scan

responsel=sh(script: scan, returnStdout: true)

echo "Scan Started..."

echo response1

// scorecard="curl -X POST --url http://localhost:8000/api/v1/scorecard --data \"hash="+hash+"\" -H
\"Authorization: d27147caa4ee637d022e501d7b475cf3d55e0cf57ca05eeea55e1f4e37fc872a\" -o response.json "

scorecard="curl -X POST --url http://localhost:8000/api/v1/scorecard --data \"hash="+hash+"\" -H
\"Authorization: d27147caa4ee637d022e501d7b475cf3d55e0cf57ca05eeea55e1f4e37fc872a\" "

echo "Scorecard: "+scorecard

response2=sh(script: scorecard, returnStdout: true)

echo "Scorecard ..."+response2

report="curl -X POST --url http://localhost:8000/api/v1/download_pdf --data \"hash="+hash+"\" -H
\"Authorization: d27147caad4ee637d022e501d7b475cf3d55e0cf57ca05eeea55e1f4e37fc872a\" -o report.pdf"

echo "report:"+report

resposne3=sh(script: report, returnStdout: true)

echo "Report is downloaded"



Benefits of Automating
Mobile Security
Assessments

Efficiency and Focus

Automation significantly
reduces manual effort by up
to 60%, allowing security
teams and developers to
focus on high-priority issues
and strategic initiatives.

Improved Security
Posture

Early identification and
remediation of vulnerabilities
during development
strengthens your overall
security posture, minimizing
the risk of exploitation in
production.

Scalability and
Consistency

Automate security testing
for a multitude of mobile
applications concurrently,
ensuring consistent security
evaluation across your entire
portfolio.

Developer
Empowerment

Provide developers with
comprehensive, actionable
insights through detailed
reports, empowering them to
address security flaws
independently and
contribute to a more secure
development process.




Key Takeaways

-,

+

Automate Security
Assessments

Integrate MobSF with Jenkins to
automate security testing,
ensuring consistent, efficient
evaluation for each build.

O
=

Embrace DevSecOps

Incorporate security as an
integral part of your
development practices, fostering
a culture of shared responsibility
and proactive security measures.

O

A=

Address Security Flaws
Early

Catch vulnerabilities early in the
development lifecycle, reducing
costs and improving the security
of your mobile applications.



MobSF: A Key Component of Your Mobile
Security Arsenal

1 Static Analysis

2 Dynamic Analysis

3 API Integration

4 Comprehensive Reporting

MobSF offers a powerful suite of security assessment capabilities, enabling you to comprehensively evaluate the
security of your mobile applications throughout the development lifecycle. Its API facilitates seamless integration with
Jenkins, automating the assessment process for increased efficiency and scalability.



Jenkins Pipelines: Driving
Automation

Trigger MobSF Scans
Execute Security Analysis
Monitor Results and Enforce Thresholds

Generate and Share Reports

Jenkins pipelines provide the framework for orchestrating the
automated security assessment process, ensuring seamless
integration with MobSF, continuous evaluation of builds, and timely
notification of any vulnerabilities identified.

—>

A

ETAGE®

IMhe dilr li= g o= o 3f yaty and teletn
aonllee fe p yor enn caln arearming,
vnioreele ioiigeo,

FIAL Ersking Cecunnes

el helerin estins

Automated makie moble 2pp
ang wicerm yaur testing

)

STAGE 5

TR ¢ qour Entroer m poai o

ok nale epe for Toe For enonre
the tropreeing

JENKINS PIPELINE

Yome Ipa lorem boew farlsls c
IMnig oplewn oore tif mee amic
oricarrie| and enciorling.

JEFM DSTAGES

Le'w |n the am laaw m ool
ciechergt stleetenices lerorle
ona \fefe mekery eder aag loe
bved erienea,

) MoTrores
Catvanl lo

TOP STAGE

JENKING PDELITYES

Derhien be lerts and moesr mo
tead aat ore woairn jeetting

JENKINGS APP TESTI

JULN HERE
] vha aled o tha cile
ot kan or lo pvege

ernviere an galy yon.



Embracing Continuous
Security Improvement

1 2

Anlegillty
tizleation

Identify Remediate
Continuous Identify vulnerabilities through Address vulnerabilities promptly,
Improvement . o L
automated security assessments prioritizing critical issues and
with MobSF and Jenkins. ensuring timely patching.

! y 7 .
0 :
J'(W?\ Vg Mt.“l g
‘-" i'm 'es -

Test Improve
Retest the application after Continuously improve security
remediation to confirm the processes, incorporating
effectiveness of the fixes and feedback and lessons learned
ensure no new vulnerabilities from previous assessments.

have been introduced.




Conclusion: Securing the
Mobile Future

By leveraging the power of MobSF and Jenkins pipelines,
organizations can effectively automate mobile application security
assessments, ensuring robust, consistent security testing throughout
the SDLC. This approach strengthens application security, empowers
development teams, and supports the secure delivery of mobile
applications in a rapidly evolving digital landscape. Embrace
automation and DevSecOps principles to secure the mobile future.



