
Exploring container-native simplicity in
AI/ML workflows

- Shivay Lamba (@howdevelop)

A Unique Challenge Exists

Transforming AI models from experimental notebooks

into robust, production-ready deployable solutions.

80% of machine learning
models never makes it to
production because of the
complex model deployment
procedures.

What is the biggest challenge with Machine learning
packaging today?
There is no standard for packaging and versioning the various artifacts needed to reproduce an AI/ML

project:

● Models in Jupyter notebooks or MLOps tools

● Datasets in data lakes, databases, or file systems

● Code in Git repositories

● Metadata (such as hyperparameters, features, and weights) scattered across different storage

systems

Why can’t we use the same pipeline for ML products
(MLOps) and conventional software projects (DevOps)?

● There are three main reasons that necessitate separate pipelines for deploying ML products and
conventional software engineering projects:

○ Nature of projects
○ Individual expertise
○ Size and complexity

● The above challenges have led organizations to adopt a separate MLOps pipeline. However,
implementing a separate MLOps pipeline has some unique challenges of its own:

○ Data management and standardization issues
○ Security and compliance issues
○ Complex model lifecycle management

Challenges with Traditional Separation of Pipelines
and shortcomings

● Distinct workflows for:
○ Data Scientists (Jupyter Notebooks, model training)

○ DevOps Teams (deployment, infrastructure)

○ MLOps Engineers (model management)

● Increased Costs and Inefficiencies
○ Duplicate efforts

○ Manual handoffs

○ Lack of standardized versioning

● Technical Debt
○ Difficulty in reproducing experiments

○ Inconsistent deployment processes

How KitOps helps solve this problem?

KitOps is an open-source, standards-based packaging and versioning system designed for AI/ML

projects.

 KitOps takes advantage of existing software standards so the tools and processes your DevOps / SRE

teams use with their containerized applications, can be used with AI/ML projects.

KitOps allows AI teams to package AI/ML models, datasets, code, and metadata into what’s called a

ModelKit.

Diving Deeper Into KitOps

ModelKit

At the heart of KitOps is the ModelKit, an OCI-compliant packaging format that enables the seamless sharing of all necessary artifacts involved in
the AI/ML model lifecycle. This includes datasets, code, configurations, and the models themselves.

 Kitfile

Complementing the ModelKit is the Kitfile, a YAML-based configuration file that simplifies the sharing of model, dataset, and code configurations.
The Kitfile is designed with both ease of use and security in mind, ensuring that configurations can be efficiently packaged and shared without
compromising on safety or governance.

Kit CLI

Bringing everything together is the Kit Command Line Interface (CLI). The Kit CLI is a powerful tool that enables users to create, manage, run, and
deploy ModelKits using Kitfiles. Whether you are packaging a new model for development or deploying an existing model into production, the Kit
CLI provides the necessary commands and functionalities to streamline your workflow.

What are ModelKits?

Comprehensive Packaging Solution

● Versioned bundles containing:
○ Machine learning models
○ Datasets
○ Configuration
○ Dependencies

Standardized Packaging

● Uses OCI (Open Container Initiative) standard
● Enables easy movement across environments

Diving Deeper Into KitOps

ModelKit

At the heart of KitOps is the ModelKit, an OCI-compliant packaging format that enables the seamless sharing of all necessary artifacts involved in
the AI/ML model lifecycle. This includes datasets, code, configurations, and the models themselves.

 Kitfile

Complementing the ModelKit is the Kitfile, a YAML-based configuration file that simplifies the sharing of model, dataset, and code configurations.
The Kitfile is designed with both ease of use and security in mind, ensuring that configurations can be efficiently packaged and shared without
compromising on safety or governance.

Kit CLI

Bringing everything together is the Kit Command Line Interface (CLI). The Kit CLI is a powerful tool that enables users to create, manage, run, and
deploy ModelKits using Kitfiles. Whether you are packaging a new model for development or deploying an existing model into production, the Kit
CLI provides the necessary commands and functionalities to streamline your workflow.

Kitfile

The Kitfile manifest for AI/ML is a YAML file
designed to encapsulate all the necessary
information about the package, including
code, datasets, model, and their metadata.

The manifest is structured into several key
sections: manifestVersion, package, code,
datasets, docs, and model

Diving Deeper Into KitOps

ModelKit

At the heart of KitOps is the ModelKit, an OCI-compliant packaging format that enables the seamless sharing of all necessary artifacts involved in
the AI/ML model lifecycle. This includes datasets, code, configurations, and the models themselves.

 Kitfile

Complementing the ModelKit is the Kitfile, a YAML-based configuration file that simplifies the sharing of model, dataset, and code configurations.
The Kitfile is designed with both ease of use and security in mind, ensuring that configurations can be efficiently packaged and shared without
compromising on safety or governance.

Kit CLI

Bringing everything together is the Kit Command Line Interface (CLI). The Kit CLI is a powerful tool that enables users to create, manage, run, and
deploy ModelKits using Kitfiles. Whether you are packaging a new model for development or deploying an existing model into production, the Kit
CLI provides the necessary commands and functionalities to streamline your workflow.

Let’s look into how does a KitOps Pipeline look like

1. kit unpack - to help pull Modelkits and run them locally (Produce the components from a modelkit on the
local filesystem)

2. kit pull - Retrieve modelkits from a remote registry to your local environment

––

 1. Create the kitfile for your local AI project

 2. kit pack - to create Modelkit from the kitfile

3. kit push - helps to copy the newly built ModelKit from the local repository to the remote repository
(registry)

Demo

Let’s look into how a simple KitOps workflow look like using KitCLI

Automating the Machine Learning Lifecycle with
KitOps and CI/CD

You can add KitOps as part of your CI/CD pipeline to automate the deployment of AI models either triggered
manually or automatically when changes takes place in the model or the artifacts.

KitOps simplifies the packaging of models and their dependencies while managing version control, among other
features.

Automated Model Deployment

● Trigger deployments manually or automatically
● Streamline model lifecycle management

Implementation steps for the Dagger CI/CD pipeline

1. Install KitOps & Dagger.io

2. Create ModelKit with Kitfile

3. Initialize Dagger module, Daggerize your
Kitfile

4. Define pipeline functions

5. Integrate with CI/CD (e.g., GitHub
Actions)

6. Automate deployment to registry

MLOps workflow with ModelKits

● Training and experimentation

● Package, validate, and deployment

● Inference

Deploying ModelKits

You can create a container or Kubernetes deployment using a ModelKit

- Init Container - The init container unpacks the model reference from a ModelKit to a specific path

and then exits. This makes it useful as a Kubernetes init container. This container also supports

verifying signatures for containers automatically from key-based or keyless signers.

- KitCLI Container - The containerized Kit CLI can be used to tailor the running of a ModelKit

because you can run any Kit CLI command. This gives you flexibility, but more manual work (the

world is your oyster, but it may be hard to shuck).

Resources

Checkout KitOps - https://kitops.ml/

KitOps Documentation - https://kitops.ml/docs/overview.html

Checkout the KitOps Dev.to Blogs - https://dev.to/kitops

https://kitops.ml/
https://kitops.ml/docs/overview.html
https://dev.to/kitops

AI Model Specification

On CNCF Slack: #model-spec-discussion

https://docs.google.com/document/d/1YemmDF_0rOy3TuUNeRAONszBWtWf6MKjZx_BmVJTMYw/e

dit?usp=sharing

The primary target for the model spec is to make AI models first-class citizens in the infrastructure world.

It describes AI models explicitly (rather than as opaque binaries) so that infrastructure components can

be aware of the model details and optimize them wherever appropriate.

With a well-defined model specification, we can bring container development and deployment

experience to AI models. Also, it is possible to build a cloud-native AI ecosystem based on it.

https://docs.google.com/document/d/1YemmDF_0rOy3TuUNeRAONszBWtWf6MKjZx_BmVJTMYw/edit?usp=sharing
https://docs.google.com/document/d/1YemmDF_0rOy3TuUNeRAONszBWtWf6MKjZx_BmVJTMYw/edit?usp=sharing

Thanks for attending!

Join the KitOps Discord You can connect with me here:

https://discord.gg/Tapeh8agYy X/Twitter: @HowDevelop

https://discord.gg/Tapeh8agYy

