Rust ¢ Unlinked

Compiler, Symbols, Linkers & Static Libraries

main.rs rustc ie. the Rust Compiler
L : . 5] 10101010
[Source Code >| Lexing, Parsing, Code i . : i s| 01000100
Analysis & Optimization LLYIMIY 5 LLVM Assembly %bieggs Linker (lla) 5
: : 101010106
1e S i i Executable
--- 01010101
LLVM Toolchain (OR)
2 11010100
[Lexer J >[Parser]
System Linker | 01010010
.
AST default on windows, macOS
O« HIR = MIR}% rustc
LLVMIR

Shriram Balaji, Microsoft CYNF42 - RUSTLANG 2024

ABOUT ME

o Working on M365 Core at Microsoft

o Tinkering with Rust since 2020

o Lately, I've been into reading about databases, systems
programming languages, and distributed systems

o @shrirambalaji everywhere wHNin

https://x.com/shrirambalaji

AGENDA

Understanding Linking

Rust Compilation - A High Level Overview

What's in an Object File? Can we link them?

ELF - The Executable and Linkable Format

Symbols, Symbol Tables and how to visualize them?
staticlib to the rescue

Cargo Build Script for linking object files

Understanding Linking

Linking involves combining object files into an executable or shared
library. It's like putting together puzzle pieces to create a working
program.

é =

. EXE

Linking involves combining object files into an executable or shared
library. It's like putting together puzzle pieces to create a working
program.

—> . /program

Linking does the magic of Symbol Resolution, where the linker matches
variable and function names (ie. symbols) to their specific memory

addresses, making sure everything fits together.

7

=

—>

. /program

Why Is understanding Linking necessary?

Linking time is often a big part of
compilation time.

In large Rust projects, roughly half of the
time could be spent in the linker.

https://blog.rust-lang.org/2024/05/17/enabling-rust-lld-on-linux.html
https://blog.rust-lang.org/2024/05/17/enabling-rust-lld-on-linux.html

COMPILATION

Phases of Compilation /,

e a compiler compiles source files into object Build Resolve
files (.o files) /
e then, a linker takes all object files and
combines them into a single executable or Compiler

shared library file.

Rust ¥ Static Linking

STATIC LINKING

All the necessary dependencies
are compiled and linked in the final
executable binary statically. This
enables easier distribution, but the
tradeoff being bigger executables.

DYNAMIC LINKING

Dynamic linking allows a

program to load external libraries
/ shared libraries into memory
and use their functionalities at

runtime, rather than at compile
time.

t is crucial to understand a little about the stages
of rust compilation, before we get to linking.

Disclaimer: I'm not a rustc compiler dev, rather
just someone curious about it

Rust Compilation - High Level Overview

Rust Compilation - High Level Overview

/ *presented linearly for darity

Rust Compilation - High Level Overview

/ *actual implementation is query based

Rust Compilation - High Level Overview

Lexing and Parsing

| Source Code I

main.rs

fn main() A
println! ("Hello, world!");

}.

Lexing and Parsing

rustc ie. the Rust Compiler

Source Code LeX|nq, Parsmg, .Coo.le
Analysis & Optimization

main.rs

fn main() A
println! ("Hello, world!");

}.

Lexing and Parsing

rustc ie. the Rust Compiler

Lexing, Parsing, Code
Analysis & Optimization

Source Code

main.rs

fn main() A
println! ("Hello, world!"); Tokens
[Lexer } >{ Parser

}

rustc_lexer + rustc_parse:: lexer converts source

code &str into parse-able token types for the

Lexing and Parsing

rustc ie. the Rust Compiler

Lexing, Parsing, Code
Analysis & Optimization

Source Code

main.rs
fn main() {
println! ("Hello, world!"); Tokens
} [Lexer } >{ Parser]
® Abstract Syntax Tree
e O Y

Parser (rustc_parse :: parser) takes the streams of tokens and
turns them into a structured form which is easier for the compiler \l{
to work with - an Abstract Syntax Tree (AST).

rustc

AST mirrors the structure of a Rust program in-memory, using a
Span to link a particular AST node back to its source text.

Code Analysis & Optimization

Source Code

rustc ie. the Rust Compiler

main.rs

fn main() {

println! ("Hello, world!");
1

AST is further lowered into a High Level Intermediate
Representation (HIR). During lowering - rustc expands macros,
de-sugars syntax (for eg. 1f let — match), performs name
resolution to resolve import and macro names. then, it does:

e Type inference - automatically deducing the types of variables
and expressions

e Trait Solving = Finding the correct implementation of a trait for
a type

Lexing, Parsing, Code
Analysis & Optimization

Tokens
[Lexer } >{ Parser]

Abstract Syntax Tree

l

\‘
)
N ,,/

[HIR

lowering
< rustc

https://rustc-dev-guide.rust-lang.org/type-inference.html
https://rustc-dev-guide.rust-lang.org/traits/resolution.html

Code Analysis & Optimization

rustc ie. the Rust Compiler

Lexing, Parsing, Code
Analysis & Optimization

Source Code

main.rs
fn main() A
println! ("Hello, world!"); Tokens

1 [Lexer } >{ Parser]
The Compiler then runs Type Checking on the HIR, and is lowered o:/.O Abstract Syntax Tree
into a Typed HIR (THIR) and then even further into Mid-Level IR J,
(MIR). Borrow Checking happens in this phase and along with that owering
rustc does operator lowering, monomorphization and many more [HIR — MIR](rustc
optimizations after borrow checking.

Monomorphization is the fancy term for generating specialized
code for each type that a generic function is called with.

Preparing for Code Generation

rustc ie. the Rust Compiler

Source Code Lexmq, Parsmg, Poo!e
Analysis & Optimization

main.rs
fn main() A
println! ("Hello, world!"); Tokens
} [Lexer } >{ Parser]
. 0.0 Abstract Syntax Tree

After all the optimizations, the MIR needs to get ready for code
generation. By default rustc uses LLVM for codegen, and hence \l{
the MII? IS .Converted to LLVM Intermedlate Rep?resentatlon (LLVM ¢ HIR — MIR]<|0werln9 S
IR), which is what the LLVM Toolchain works with. LLVM IR
LLVM project contains a modular, reusable & pluggable compiler

backend used by many compiler projects, including the clang C
compiler and rustc.

Code Generation & Building the executable

® LLVMIR > LLVM

Code Generation & Building the executable

® LLVMIR > LLVM 5| Assembly Objects
OADOO

Code Generation & Building the executable

® LLVMIR > LLVM s| Assembly Objects N Linker (lld)
OAOO

Code Generation involves generating the machine code for the
specific platform by LLVM. LLVM IR is assembly-like with
additional low-level types and annotations added for
optimizations.

LLVM performs these optimizations and spits out the object files,
which are passed on to the linker.

Code Generation & Building the executable

LLVM Toolchain

® LLVMIR > LLVM >] Assembly

> Linker (lid)

'------ -----‘
-----------‘

Code Generation involves generating the machine code for the
specific platform by LLVM. LLVM IR is assembly-like with
additional low-level types and annotations added for

(OR)

optimizations. System Linker

LLVM performs these optimizations and spits out the object files,)

, , , default on windows, macQOS
which are passed on to the linker. By default on windows, macOS
they are passed to system’s linker. On linux, as of May 2024 it’s

passed onto rust-lld in nightly builds.

Code Generation & Building the executable

LLVM Toolchain

1 }
! |
! |
E i 10101010
! |
! |
! |

® LLVMIR > LLVM N s Linker (lld) ; JHIEELE
! |
E i 10101010
| |
E E Executable
! |
Code Generation involves generating the machine code for the (OR) Jrprened
specific platform by LLVM. LLVM IR is assembly-like with 11010100
additional low-level types and annotations added for
optimizations. System Linker 01010010

| —

LLVM performs these optimizations and spits out object files,

. .) default on windows, macOS
which are passed on to the linker. By default on windows, macOS

they are passed to system’s linker. On linux, as of May 2024 it’s
passed onto rust-lid in nightly builds. The linker then links together
the object files to return an executable.

What does query based compilation look
like In rustc?

Dem
and Dri
riven C
ompilation wit
ith Q
uerie
S

B

Query

Demand Driven Compilation with Queries

rustc

[JE———

Query Compiler DB

Demand Driven Compilation with Queries

rustc

key

result type > U

provider function -
Compiler DB

Every Step from earlier is modeled as a “Query”

Let’s look at a query from the “Trait Solving” Step

Demand Driven Compilation with Queries

/// Given a crate and a trait, look up all impls of that trait in the crate.
/// Return "~ (impl_id, self_ty) .

query implementations_of_trait(key: (CrateNum, DefId)) — &'tcx [(DefId, Option<SimplifiedType>)] {
desc { "looking up implementations of a trait in a crate" }
separate_provide_extern

source: compiler/rustc_middle/src/query/mod.rs

https://github.com/rust-lang/rust/blob/355a307a874077eff12bd99c6fd3eb6bfda79993/compiler/rustc_middle/src/query/mod.rs#L1710-L1713

Demand Driven Compilation with Queries

/// Given a crate and a trait, look up all impls of that trait in the crate.
/// Return "~ (impl_id, self_ty) .

query implementations_of_trait(key: (CrateNum, DefId)) — &'tcx [...]

query modifiers

result type

guery key type
guery name

keywonrd

source: compiler/rustc_middle/src/query/mod.rs

https://github.com/rust-lang/rust/blob/355a307a874077eff12bd99c6fd3eb6bfda79993/compiler/rustc_middle/src/query/mod.rs#L1710-L1713

Demand Driven Compilation with Queries

rustc

N — 5 —=

Query Memoized Compiler DB
Results

Enough about Compilation, Back to Linking &

You may have looked at . o files in the past and
wondered. ..

What's in these .o files?

“An object file contains machine code or bytecode, as
well as other data and metadata, generated by a
compiler or assembler from source code during the
compilation or assembly process. The machine code
that is generated is known as object code.”

source: Wikipedia

If it's jJust machine code,
can we link them
ourselves?

Let’s understand with an example

FOO.RS BAR.RS

#![no_main] #![no_main]
t#H no_mangle] extern "C" {
pub static mut Global: 132 = 5; static mut Global: 132;
1
t#H no_mangle]
pub fn foo() { #H no_mangle]
unsafe { pub extern "C" fn bar() {
Global = 10; unsafe {
} Global = 20;
} }
1

Importing a GLoba'l variable from foo.rs in bar.rs and update it’s value to 20.

FOO.RS BAR.RS

t#H no_mangle] extern "C" {
pub static mut Global: 132 = 5; static mut Global: 132;
}
t#H no_mangle]
pub fn foo() { #H no_mangle]
unsafe { pub extern "C" fn bar() {
Global = 10; unsafe {
} Global = 20;
} }
}

The #! [no_main] attribute tells the compiler that

there is no main function, and effectively not to

throw a compiler error when it doesn'’t find one.

FOO.RS BAR.RS

#![no_main] #![no_main]
pub static mut Global: 132 = 5; static mut Global: 132;
1
t#H no_mangle]
pub fn foo() { #H no_mangle]
unsafe { pub extern "C" fn bar() {
Global = 10; unsafe {
} Global = 20;
} }
1

The #{no_mangle] attribute disables mangling.

When Rust code is compiled, identifiers are

“mangled” ie. transformed into a different name.

FOO.RS BAR.RS

#![no_main] #![no_main]
pub static mut Global: 132 = 5; static mut Global: 132;
1
t#H no_mangle]
pub fn foo() { #H no_mangle]
unsafe { pub extern "C" fn bar() {
Global = 10; unsafe {
} Global = 20;
} }
1

for eg. Global variable gets mangled

to __ZN11foo6Globall7ha2al2041c4eb557chE.
This is done to avoid naming conflicts when
linking with other libraries.

FOO.RS BAR.RS

#![no_main] #![no_main]
pub static mut Global: 132 = 5; static mut Global: 132;
}
t#H no_mangle]
pub fn foo() { #H no_mangle]
unsafe { pub extern "C" fn bar() {
Global = 10; unsafe {
} Global = 20;
} }
}

however, we disable it with # no_mangle] so that

the symbol name is preserved, and can be easily
linked by name.

FOO.RS BAR.RS

#![no_main] #![no_main]
t#H no_mangle] extern "C" {
pub static mut 132 = 5; static mut Global: 132;
}.
t#H no_mangle]
pub fn foo() { #H no_mangle]
unsafe { pub extern "C" fn bar() {
Global = 10; unsafe {
} Global = 20;
} }

FOO.RS BAR.RS

#![no_main] #![no_main]
t#H no_mangle] ' extern "C" {
pub static mut 132 = 5;%5 static mut Global: 132;
 } .
t#H no_mangle] e eeeeeeeeeeeneeaeeaaaee. :
pub fn foo() { #H no_mangle]
unsafe { pub extern "C" fn bar() {
Global = 10; unsafe {
} Global = 20;
} }

FOO.RS BAR.RS

#![no_main] #![no_main]
t#H no_mangle] ' extern "C" {
pub static mut 132 = 5;%5 static mut Global: 132;
 } .
t#H no_mangle] e eeeeeeeeeeeneeaeeaaaee. :
pub fn foo() { #H no_mangle]
unsafe { pub extern "C" fn bar() {
Global = 10; unsafe {
} Global = 20;
} }
}

The extern "C" block tells the compiler that

GLlobal is defined elsewhere in a foreign library.

FOO.RS BAR.RS

#![no_main] #![no_main]
t#H no_mangle] ' extern "C" {
pub static mut 132 = 5;%5 static mut Global: 132;
 } .
t#H no_mangle] e eeeeeeeeeeeneeaeeaaaee. :
pub fn foo() { #H no_mangle]
unsafe { pub extern "C" fn bar() {
Global = 10; unsafe {
} Global = 20;
} }
1

extern "C" doesn't mean we are inter-operating
with C, but rather using the platform’s C ABI
(Application Binary Interface).

FOO.RS BAR.RS

#![no_main] #![no_main]
t#H no_mangle] ' extern "C" {
pub static mut 132 = 5;%5 static mut Global: 132;
 } .
t#H no_mangle] e eeeeeeeeeeeneeaeeaaaee. :
pub fn foo() { #H no_mangle]
unsafe { pub extern "C" fn bar() {
Global = 10; unsafe {
} Global = 20;
} }
}

bar.rs assumes that a variable declaration for

GLlobal, is present in a foreign library.

FOO.RS BAR.RS

#![no_main] #![no_main]
#H no_mangle] extern "C" {
pub static mut Global: 132 = 5; static mut Global: 132;
}
t#H no_mangle]
pub fn foo() { #H no_mangle]
' unsafe { : pub extern "C" fn bar() {
: Global = 10; i unsafe A
.} : Global = 20;
r +H
}

This block is unsafte because we are updating a

global static mutable.

FOO.RS BAR.RS

#![no_main] #![no_main]
#H no_mangle] extern "C" {
pub static mut Global: 132 = 5; static mut Global: 132;
1
t#H no_mangle]
pub fn foo() { #H no_mangle]
unsafe { pub_extern "C" fn bar() 4
Global = 10; ' unsafe { :
} | Global = 20; :
})
p e

This block is unsafe because Rust cannot
guarantee safety in FFI calls. We are trying to
mutate a global static variable imported from a

library, which cannot be memory-safe.

Let’s compile and get those object files!

But, wait since we want to try manually
linking - let’s not use cargo for now

Compiling & Emitting Object Files

$ rustc --emit=obj src/foo.rs && rustc --emit=obj src/bar.rs

A symbol in a symbol table refers to an identifier,
such as a variable name or function name, that is
stored in a data structure called a symbol table.

Symbols are stored in sections of the object file
In a specific format - ELF (Executable

and Linkable Format) on Unix-like systems. On
macOS, it's Mach-0 (Mach Object) but similar to

ELF. On Windows, it's the COFF (Common Object
File Format)

Visualizing Symbols - nm

$ nm foo.o
0O000000000000010 D _Global
0OO000EOO0OBEEO0BE T _foo
0000000000000000 t LtmpOo
0O000O00000000010 d Ltmpl
0O000000000000018 s Ltmp?2

The output of nm is in the following format:

e D - Global Data section symbol
e T - Global Text symbol
e d - Local symbolin the data section

e s - Unitialized Local symbol for small objects

If you haven't noticed, lowercase denotes local symbols, and uppercase denotes global symbols.

The 1tmp symbols are temporary symbols generated by the compiler during compilation.

Visualizing Symbols - nm

Let's take a look at the symbol table for bar.o as well:

$ nm bar.o
U Global

0O0OOOOOLOOOOEEO T _bar
0OO0OOOOOOOOOOOEO t Ltmpl
0O0OOOO00OOO001I8 N Ltmpl

wherein U denotes an Undefined symbol. Remember, the Undefined pseudo section | was
mentioning, that's where the Global symbol exists. This is because there's an undefined

symbol reference to the Global variable, which will be resolved only during the linking phase.

Inside ELF - Executable & Linkable Format

ELF Header metadata of .o file

text assembly language code

rodata readonly variables

.data

read/write/global variables

.bss block starting symbol (ie. values that start with 0)

shortcut that is used to save space instead of allocating zeroes in .o file

.symtab symbol table

.rel.text relocation entry for text section

missing symbols fixed later by linker

rel.data relocation entry for data section

.debug stack local variables, debugger info

line maps asm code to line number in source required for debugging

.strtab maps symtab entries to source var names

Let’s try manually linking!

Lets make a main.rs that calls the foo and bar functions.

main.rs

extern "C" A{
fn foo();
fn bar();
static mut Global: 132;

fn main() A{
unsafe A
foo();
bar();
println! ("Global: {}", Global);

Let's compile the main.rs file and emit an object file like before:

$ rustc --emit=obj -o main.o main.rs

Manually Linking using 1d

$ 1d -o main main.o foo.o bar.o

Manually Linking using Ld

Y x
©

Undefined symbols for architecture armé4:
" _Unwind_Resume", referenced from:
[__ZN4core3ops8function6FnOnce9call_oncel7hf02687347fd78dcOE]in main.o
"_ZN3std21io5stdiob_printl7h27e3b43a8b5f8bbéaE", referenced from:
_ ZN4main4dmainl7h49930d4df5c05f23E 1in main.o
" ZN3std2rtl9lang_start_internall7h47d7f1f6477d860bE", referenced from:
_ _ZN3std2rtl0lang_startl7h43f0cdc6e9029b25E 1in maln.o

¢ 1d -o main main.o foo.o bar.o \/ std::core crafe needs 1o be Linked

"__ZN4core3fmt3num3imp52_LTimpl$u20$core.. fmt..Display$u20$for$u20$i32$6T$3fmt17h810eb3
12f616c580E", referenced from:
__ZN4main4mainl7h49930d4df5c05f23E in mailn.o
"_rust_eh_personality", referenced from:
/Users/shrirambalaji/Repositories/learning-linkers/main.o
"dyld_stub_binder", referenced from:
<initial-undefines>
1d: symbol(s) not found for architecture armé4

staticlib to the rescue

Instead of us trying to link the core crate and bring in std dependencies ourselves,
we can create a static library from the foo.rs and bar.rs files, and then link them

manually:

$ mkdir -p target/out
$ rustc --crate-type=staticlib -o target/out/libfoo.a foo.rs
$ rustc --crate-type=staticlib -o target/out/libbar.a bar.rs

The outputisa .a file, which is a static library / archive in *nix systems.

and it contains the .o files we saw previously.

staticlib to the rescue

We can use the ar command to list the contents of the archive.

$ ar -t target/out/libfoo.a | grep foo
foo.fo00.730f%2a7e513a85b2-cqu.0.rcqu.o
foo.1l0ftosré6tvdwscdu.rcgqu.o

Interestingly the .a file contains the .o files we saw earlier, but with a different name,
specifically with *.rcgu.o suffix. The rcgu stands for “Rust Codegen Unit” and is a unit of

code that the compiler generates during Code Generation phase.

staticlib to the rescue

If we extract the .o file and look, we can see the same symbols we saw earlier.

$ ar -x target/out/libfoo.a foo.foo.730f%9a7e513a85h2-cqu.0.rcgu.o
$ nm foo.foo.730f%9a7e513a85b2-cqu.0.rcgqu.o

OOOOOOOO00000010 D _Global

OOOOOOOOOO0COBOOO T _foo

OOOOOOOOOO00006O t Ltmplo

OOOOOOOO0O0000010 d Ltmpl

OOOOOOOOOO000018 s 1tmp2

Doing things the rust way - cargo’s back!

Cargo build script

We can add a build scriptin a build.rs that goes in the project's root. This will link the static

libraries from the previous step together.

build.rs

fn main() {
println! ("cargo:rustc-link-search=native=target/out");
println! ("cargo:rustc-1link-1lib=static=fo00");
println! ("cargo:rustc-1link-1lib=static=bar");

e cargo:rustc-link-search=native=target/out instruction tells the compiler to search

for the static libraries in the target/out directory

e cargo:rustc-link-1lib=static=foo and cargo:rustc-link-lib=static=bar tells the
compiler to link the foo and bar static libraries. As an alternative to the linking these in
the build script, we can also use the #{1ink] (https://doc.rust-
lang.org/reference/items/external-blocks.html#the-1ink-attribute) attribute

directly in main.rs

Bonus: What does the LLVM IR look like?

LINKS

e Blog
e Slides

e Code Snippets on Github

e CS 361 Systems Programming by Chris Kanich

e High Level Compiler Architecture - Rustc Guide

Refe rences e Rust Borrow Checker - Nell Shamrell-Harrington

e Linkage - Rust Reference

e Visualizing Rust Compilation

e Freestanding Rust Binary - Philipp Oppermann

e Matt Godbolt - The Bits between the Bits

https://blog.shrirambalaji.com/posts/resolving-rust-symbols/
https://www.figma.com/slides/RahU3jEWdyqdQROOX7aATa/Rust-Unlinked---Conf42%2C-Rustlang-2024?node-id=82-175&t=1Z4vL89P2v9cO4fU-0
https://github.com/shrirambalaji/resolving-rust-symbols-learning-linkers
https://www.cs.uic.edu/~ckanich/cs361/s21/
https://rustc-dev-guide.rust-lang.org/overview.html
https://www.youtube.com/watch?v=HG1fppexRMA
https://doc.rust-lang.org/reference/linkage.html
https://blog.mozilla.org/nnethercote/2019/10/10/visualizing-rust-compilation/
https://os.phil-opp.com/freestanding-rust-binary/
https://www.youtube.com/watch?v=dOfucXtyEsU&t=1547s

CONF42

Thank You
@shrirambalaji ¢ M

https://x.com/shrirambalaji

