

The Future of >Observability<

What to expect in the next 10 years

An evolving definition

Observability

/əb'zərvə bilədē/

Traditional Definition

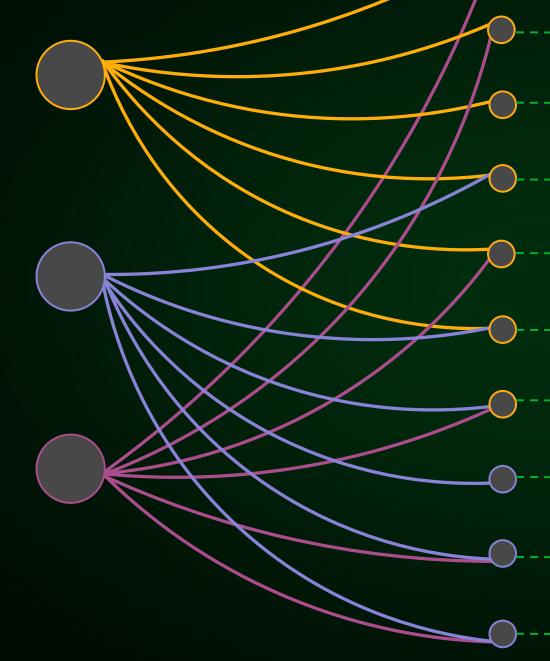
Observability is the ability to observe and understand the internal state of a system by examining its external outputs (metrics, logs and traces).

• Current Reality

Observability is the digital nervous system of modern enterprises.

 It's no longer just about logs, metrics, and traces – it's about achieving real-time comprehension of complex digital ecosystems through the lens of causality. what is happening, why it is happening, what to do about it, in real time.

Understand

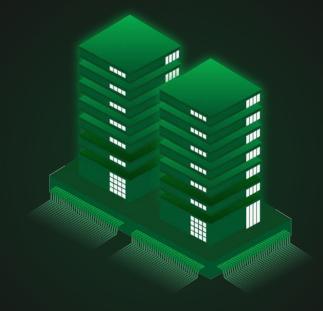


The Current State of Observability

Too Little

Too Complex

Too Expensive



--- Limited Visibility

- --- Late Detection
- Performance Bottlenecks
- Delayed Troubleshooting
- Outages
- Reduced Engineering Efficiency
- Maintenance and Operations overheads
- Hybrid Infrastructure
- --- Dynamic Environments
- --- Does not scale

The Great Infrastructure Explosion: 2025-2035 🚀

Data Center Boom

- Global data center market: \$517B (2025) → \$1.9T (2035)
- Energy consumption: $2\% \rightarrow 8\%$ of world's electricity
- Compute capacity growing 2.5x faster than Moore's Law

The Human factor

- DevOps/SRE jobs growing 300% faster than traditional IT
- Average org managing 5x more services by 2030
- 5x increase in infrastructure teams needed

References: Gartner Data Center Market Forecast, International Energy Agency (IEA) Projections, OpenAI Compute Trends Analysis, LinkedIn Workforce Insights, DORA State of DevOps

Observability = Mission Critical

- Average cost of downtime is 9000\$ & growing
- Unobserved & misunderstood failures can cascade across thousands of services and distributed systems
- Observability has become survival-critical, not just nice-to-have

The New Observability Equation

11 Data

Metrics, Logs, Traces and other raw system output form the foundational layer

Insights

Context

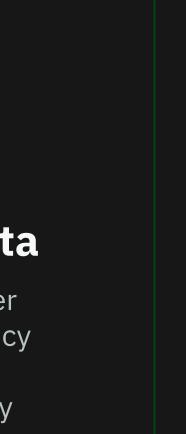
Rich metadata including anomaly patterns, correlations, business KPIs and real world events

AI, autonomous agents and predictive modelling

High-Fidelity Data: The Foundation

Why More is Better

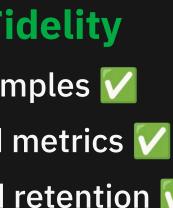
- Higher resolution = Better insights
- Sampling = Missing unknown unknowns
- Future-proof your troubleshooting
- AI needs data density to learn patterns


The New Rules of Data

- Collect everything, filter later
- Maximum sampling frequency
- No artificial limits
- Store everything, indefinitely

LOW Fidelity vs HIGH Fidelity

🚹 10s-60s samples vs 🏾 1s samples 🚺 Partial metrics vs Unlimited metrics 🔽 7-day retention vs Unlimited retention 🔽



Real Impact

- 50% faster MTTR with high-fidelity data
- Catch micro-anomalies before they cascade
- Historical patterns reveal future issues

Rich Metadata: Context at scale

Business Context

Revenue impact Customer journey touchpoints Business transaction flow SLA/SLO implications

Operational Context

Service dependencies Infrastructure changes Deployment events Configuration updates

Context

Real-world events Regional impacts Third-party status Market conditions

Raw Alert: "CPU at 90%" 🚹

With Context: "Revenue-critical service experiencing never before seen slowdown during peak shopping hour due to recent deployment" 🔽

Environmental

Opinionated Insights

Auto-correlation of events Smart anomaly grouping **Business impact scoring** Probable cause ranking

AI: The Force Multiplier

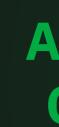
Specialized AI Agents

Memory-augmented agents for historical pattern matching

Reasoning agents for causal analysis across service dependencies

Planning agents for capacity optimization and cost management

Autonomous RAG-enabled agents for documentation/runbook execution


Technical **Capabilities**

LLM-powered log parsing: Understanding complex error patterns

Multi-hop reasoning: "Service A latency → Database load → Memory leak"

Vector similarity search across historical incidents

Real-time prompt engineering based on system state

on seasonality

Autonomous **Operations**

- Self-modifying alert thresholds based
- Automatic K8s pod scaling based on predictive analytics
- Intelligent trace sampling during incident investigation
- Dynamic service dependency mapping

New **Realities**

- "Memory Leak Detection → Git Blame Analysis \rightarrow Deploy Rollback Decision → Auto-scaling Adjustment"
- becomes a possible workflow
- "X% of routine incidents resolved without human intervention" becomes a new KPI

Decentralization: The Way Forward

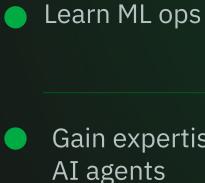
Why Centralization Fails

- Single point of failure for entire observability stack
- Exponential cost of data movement and storage
- Cross-team bottlenecks and access control nightmares
- Data sovereignty and compliance headaches
- Query performance degradation at scale

Real-World Impact

- 90% reduction in data transfer costs
- 65% faster mean time to detection
- Teams can operate independently
- Reduced network and storage costs
- Process metrics where they originate

Modern systems are distributed by nature.


Why force their observability to be centralized?

Are you ready for the next 10 years? For SRE & DevOps Professionals **For Organizations** Reduce sampling intervals - focus on high fidelity Build real-time analysis skills metrics and per-second granularity at scale

Focus on real-time, not just historical analysis

Democratize observability access across teams

- AI-driven anomaly detection and automated root cause analysis
- Implement true edge-first observability architecture

"Future SREs will manage 100x more services with 10x less manual intervention"

Focus on AI-assisted troubleshooting and automated remediation

Develop expertise in causal analysis

Gain expertise working with and orchestrating

Back to the future

Do not wait until

- Your monitoring tools are obsolete Your dashboards are peddling half truths Your teams are drowning in alerts Your systems are too complex for humans alone

The tools of tomorrow are here today. Use them.

- Embrace High Fidelity & Real Time Data Don't settle AI Agents - Let machines do what humans cant or dont want to Go Distributed - True Fidelity demands decentralization Demand Insights - Not more charts, dashboards and noise
- igodolightarrow

"The future is already here — it's just not evenly distributed yet."

- William Gibson

Netdata

www.netdata.cloud github.com/netdata/netdata

Shyam Sreevalsan

shyam@netdata.cloud linkedin.com/in/shyamvalsan