
Page:

Decentralized Monitoring, and why it matters

Shyam Sreevalsan

Page: 2

Observability - in a nutshell

Stuff you care about

Page: 3

Observability - in a nutshell

Metrics

Stuff you care about

Traces

Logs

Page: 4

Observability - in a nutshell

Metrics

Stuff you care about

Traces

CollectLogs

Page: 5

Observability - in a nutshell

Alert

Metrics

Stuff you care about

Traces

CollectLogs

Visualize

Page: 6

Observability - in a nutshell

Alert

Metrics

Stuff you care about

Traces

CollectLogs

Visualize

Page:

● 1st Generation (Checks)
○ Nagios, Zabbix, PRTG, Icinga, CheckMK

● 2nd Generation (Metrics)
○ Prometheus, Graphite, InfluxDB, OpenTSDB, Cacti, Munin

● 3rd Generation (Logs)
○ ELK, Splunk

● 4th Generation (Integrated)
○ Datadog, Dynatrace, Instana, NewRelic, Grafana

It’s crowded in
here

7

Observability Landscape

Page:

● Centralizes Metrics, Logs, Traces & Checks

● Comprehensive visibility

● Correlate trends across various data types

● Enables deep understanding of system behavior

Centralized
Observability
is the default
setting today

8

Centralized Monitoring

Page:

● Centralizes Metrics, Logs, Traces & Checks

● Comprehensive visibility

● Correlate trends across various data types

● Enables deep understanding of system behavior

Centralized
Observability
is the default
setting today

9

Centralized Monitoring

The 7 deadly sins of
Centralized Monitoring

Page: 11

Fidelity

● Fidelity = Granularity + Cardinality
● Low granularity = blurry data
● Low cardinality = blind spots
● Low granularity + low cardinality = abstract

view lacking detail and coverage

● Centralization makes fidelity and
cost, proportional to each other
● Increasing fidelity results in higher costs
● Reducing costs leads to a decrease in fidelity
● Low fidelity by design

Page: 12

Scalability

● Bottlenecks

● Capacity Limits

● Latency & Delays

● Complex load balancing

Page: 13

Cost

● Centralized data storage

● Centralized compute

● High Data Egress

● Scaling costs grow disproportionately

● Result == teams cherry picking what

to observe == bad move

Page: 14

Accuracy

● Reduced Granularity

● Data Inconsistency

● Delayed Detection

● Missed alerts

● … outages, downtime, pain

Page: 15

Resilience

● Single point of failure

● Cascading failures

● Disaster Impact

● Recovery Time

Page: 16

Efficiency

● Processing delays

● Inefficient data handling

● Energy consumption

● Resource overload

Page: 17

Data Privacy

● Concentration of Risk

● Compliance Challenges

● Limited deployment options

● A question of trust

Solution = Decentralize!

Page: 19

Centralized vs Decentralized

Page: 20

Centralized vs Decentralized

1. FIDELITY
2. SCALABILITY
3. COST
4. ACCURACY
5. RESILIENCE
6. EFFICIENCY
7. DATA PRIVACY

Page: 21

Centralized vs Decentralized

1. FIDELITY
2. SCALABILITY
3. COST
4. ACCURACY
5. RESILIENCE
6. EFFICIENCY
7. DATA PRIVACY

Page: 22

Decentralized Design For High Fidelity

● Keep data at the edge
○ Compute & storage resources are already available and spare
○ No need for network resources
○ The work to be done is small and it can be optimized, so that monitoring is a “polite citizen” to production

applications

● Make the data highly available, across the decentralized network
○ Ephemeral nodes, that may vanish at any point in time
○ High availability of observability data
○ Offloading “sensitive” production systems from observability work

● Unify and integrate everything at query time
To provide unified infrastructure-wide views, query edge systems (or the mini centralization points), aggregate
their responses and provide high-resolution, real-time dashboards and alerts.

The Netdata Way

Page: 24

Netdata “Agent”

● Open Source

● Real Time Monitoring

● Discover -> Collect -> Store

● Metrics & Logs

● Alerts & notifications

● Anomaly detection & ML at the edge

● Stream data to other agents

● Query any agent from cloud

Page: 25

Distributed Metrics Pipeline

The Netdata
Metrics Pipeline

is like lego
building blocks

High-resolution tier at
~0.5 bytes per sample

on disk.

Multiple tiers provide
efficient storage for
years of retention.

Page: 26

Agents can be lightweight and capable

Resource Dynatrace Datadog Instana Grafana Netdata

CPU Usage (100% = 1 core) 12% 14% 6.7% 3.3% 3.6%

Memory Usage 1400 MB 972 MB 588 MB 414 MB 181 MB

Disk Space 2 GB 1.2 GB 0.2 GB - 3 GB

Disk Read Rate - 0.2 KB/s - - 0.3 KB/s

Disk Write Rate 38.6 KB/s 8.3 KB/s - 1.6 KB/s 4.8 KB/s

Egress Internet Bandwidth 11.4 GB/mo 11.1 GB/mo 5.4 GB/mo 4.8 GB/mo 0.01 GB/mo

What you get by just installing Netdata on an empty VM
● 150+ dashboard charts, 2k+ unique time-series
● 50+ unique pre-configured alerts, Anomaly detection for every metric
● 2 weeks of per-sec, 3 months of per-min, 2 years of per-hour data using just 3GiB of disk space

Full analysis here.

https://www.netdata.cloud/blog/netdata-vs-datadog-dynatrace-instana-grafana/#summary

Page: 27

Netdata “Parents”

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C1 C2 C3 C4 C5

PA

PB

PC

Data Center 1 Data Center 2

Cloud Provider 1

Netdata Parent

Netdata Parent

Netdata Parent

● Enhanced Scalability and Flexibility

● Resilience and Fault Tolerance

● Optimized Cost and Performance

● Always On-Prem

● Bottom-Up Observability

● Production Systems Isolation

Page: 28

Netdata “Cloud”

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C1 C2 C3 C4 C5

PA

PB

PC

Data Center 1 Data Center 2

Cloud Provider 1

Netdata Cloud

Netdata Parent

Netdata Parent

Netdata Parent

● Does not centralize
observability data

● Maintains a map of the
infrastructure

● Queries Netdata agents and
parents

● Horizontal Scalability

Page: 29

Common Concerns about Decentralized Designs

● The agent will be heavy
No! The Netdata agent processes thousands of metrics per second, and is one of the lightest observability agents
available.

● Querying will increase load on production systems
No! Each agent serves only its own data. Querying such a small dataset is lightweight and does not influence
operations. For very sensitive or weak production systems, a mini-centralization point next to these systems will
isolate them from queries (and also offload them from ingestion, processing, storage and retention).

● Queries will be slower
No! They are actually faster! Distributing tiny queries in parallel to multiple systems, provides an aggregate compute
power that is many times higher to what any single system can provide.

● Will require more bandwidth
No! Querying is selective, most of the observability data are never queried unless required for exploration or
troubleshooting. And even then, just a small portion of the data is examined.

So, the overall bandwidth used is a tiny fraction compared to centralized systems.

Page: 30

Time for a quick demo!

The (long and winding)
road ahead

Page:

● Developing a decentralized
observability platform - is NOT easy
○ Resource consumption at the edge has to

be minimal

○ Complex queries and aggregation must
be handled behind the scenes

○ Keep deployment simple!

○ Learn to relinquish control

Where are all
the other
Decentralized
Observability
platforms?

32

What’s the catch?

Page:

● Do NOT compromise on fidelity

● Demand more and demand better
from your observability provider

● If you operate a DIY monitoring
stack, apply decentralized principles
for long term benefits

● Why centralize observability in
distributed, multi-cloud, auto-scaling
environments?

Hard problems
CAN
be solved

33

The future is decentralized

Making monitoring easy
for everyone

www.netdata.cloud
github.com/netdata/netdata

shyam@netdata.cloud

linkedin.com/in/shyamvalsan

https://netdata.cloud
https://github.com/netdata/netdata

