)

D)

FERMYON

Build a Serverless WebAssembly
App in Python using Spin

Sohan Maheshwar

Lead Developer Advocate @ Fermyon

The next wave of cloud

compute will be powered
by WebAssembly

FERMYON

How and How will this
when to use change
everything?

FERMYON

What Is
WebAssembly?

The boring answer: It's just another bytecode format

O

A few things to know about .
WebAssembly

r name for it
> compilation target

Wasm is another bytecode format

B-8-0:

A few things to know about
WebAssembly

* Wasm is just another name for it
* Desighed as a portable compilation target
* Originates from the browser, now also available outside

 "compile once" and then run that code on any number of
targets

WA

Host Runtime

Guest Wasm Module

Function: add

Function: plusOne

O

Compile and Run

Compile Run

WASI: A new kind of System Interface

TL;DR: it allows you to run WebAssembly outside of the
browser

» Access to several operating-system-like features, including
files and filesystems, clocks, and random numbers

» Independent of browsers, so it doesn't depend on Web
APIs or]S

* It extends Wasm’s sandboxing to include I/O.

Compilation and Language Support

WebAssembly Support in Top 20 Languages

This reports on the top 20 languages from RedMonk’s ranking. Some
languages, like CSS, PowerShell, and “Shell”, don’t really have a meaningful

expression in Wasm. However, we have left them here for completeness.

Language Core Browser WASI Spin SDK
JavaScript v v = v

Python v = v v

Java v v v =

PHP v v v

Css N/A N/A N/A N/A

C# and .NET v v v v

C+ v v 4

TypeScript v ~ v

Ruby v % v

https://www.fermyon.com/wasm-languages/webassembly-language-support/

How do | compile my
code to Wasm?

R

O

| Rust has great Wasm support

Interpreted languages
are a little more tricky

R

O

You need to compile the interpreter to
Wasm

Any . .
oooooooooo n Execution
Program
x86

ted with Wasm

FERMYON

Introducing Spin

* The open-source tool for @ G==3)
1 i tart 2 - T (main) $ spin new
bUIIdIng WebAssembIg Start a new project

Pick a template to start your projec

(http-go (HTTP handl i
Se rve rIeSS appS @ -m httg-gzift (HT;sq:::ltjesinhaﬁ;l:ili

» http-rust (HTTP request handler us

Build your app http-zig (HTTP request handler us:

() Creqte G new Serverless W'ith jUSt k kv-explorer (Explore the contents-

7 redis-go (Redis message handler us
redis-rust (Redis message handler
a few commands. ® Gnm)

Run your app

\S

https://developer.fermyon.com/spin

FERMYON

https://developer.fermyon.com/spin

O sPIN

The framework to compose serverless

WebAssembly apps.

OPEN SOURCE 15+ LANGUAGES
4.6K GITHUB % : SIMPLE CLI

yon/spin

® S PI N Spin is an open source project, built with open standards

like WASI, Wagi and the WebAssembly Component Model.

AT A GLANCE: COMPOSING APPS:

» HTTP & Redis Triggers

Serverless Al @ Key/Value Store « Relational Database Support
Quickly test and run Easily persist data in your + Variables & Secrets Rotation
inferencing workloads with apps with a built-in KV store.

LLMs.

DEV EXPERIENCE:

» Supports almost any

Powerful CLI NoOps SQL Database programming language

Easy to create, run and Add SQLite data to your app * Easy to debug with included
: i : : : helper commands

deploy projects - in as little with an always-available

as 66 seconds. SQLlite DB.

FERMYON

FERMYON

4 things making WebAssembly great

Binary Size

Rust hello-world ~2MB
AOT compiled ~300KB
Basic Spin http api

~2.3MB JIT
~1.1MB AOT

FERMYON

*https://00f.net/2023/01/04/webassembly-benchmark-2023/

4 things making WebAssembly great

Binary Size Startup Time

Rust hello-world ~2MB Startup times comparable
with natively compiled

AOT compiled ~300KB code

Basic Spin http api Only 2.*3x slower than
~2.3MBJIT RS
~1.1MB AOT

FERMYON

*https://00f.net/2023/01/04/webassembly-benchmark-2023/

4 things making WebAssembly great

Binary Size

Rust hello-world ~2MB
AOT compiled ~300KB
Basic Spin http api

~2.3MB JIT
~1.1MB AOT

Startup Time

Startup times comparable
with natively compiled
code

Only 2.3x slower than
native*

*https://00f.net/2023/01/04/webassembly-benchmark-2023/

Portability

Build once, run anywhere!

Same build (JIT) works
across OS and platform
arc

Security

Sandboxed execution

Capability based security
model

FERMYON

FERMYON

How this will change
cloud computing

Gradually, then suddenly

Q

How cloud computing has evolved:

PRE-CLOUD ———> VIRTUAL MACHINES — CONTAINERS —— WASM

Runs anywhere.

OS/Utilities OS/Utilities OS/Utilities : Developer doesn’t need
. to worry about the 0S,

Images or language.

Kernel/Drivers

Kernel/Drivers : : : : : Host

oooooooooooooooooooooooooooo

FERMYON

FERMYON

PAIN POINT

Containers are too 2
expensive, over- —Jii

consuming resources.

[Alcross 50 of the top public software
companies currently utilizing cloud
infrastructure, an estimated $100B of

Provisioned Capacity
T

market value is being lost among them
due to cloud impact on margins r.j -

Vv

Time

Vv

Source: https://al6z.com/the-cost-of-cloud-a-trillion-dollar-paradox/

FERMYON

FERMYON

PAIN POINT

Serverless has a
Cold Start problem.

Solutions like AWS Lambda frequently
take 2-3 seconds to wake up and start
executing. Often the startup delay is
orders of magnitude longer than the
execution time itself, requiring
complex and expensive workarounds.

Time you spend waiting for 1/0

NS

WAITING ‘ . EXECUTING

1)

Time during which you are
paying for compute resources

FERMYON

WHY FERMYON

Cold Starts become
a thing of the past.

With WebAssembly’s small size and
fast start-up time, we’re able to cold-
start a module on every execution
(within a millisecond in Spin), so it is
not a problem to completely startup,
execute and shutdown within the span
of every request.

Fermyon Spin:

WAITING

Full startup

in >2

milliseconds

EXECUTING

Compared to a common ~200ms cold start
per AWS Lambda benchmarking data

FERMYON

FERMYON

Component Model

Write code in whatever
language you want

Use libraries from all over
without even knowing what

language they were written
in!

Wasm will take care of the
rest.

I need a
YAML parser
& a Date

Formatter

Your JS App

Rust YAML
Parser

Python Date
Formatter

Wasm Module

ef
P

... and many more!

WA

Core Wasm Module

Portable

Isolated

Open
Standard

Polyglot

| Composing Applications

componentA.wasm componentB.wasm

[~}
x

Core Wasm Module Core Wasm Module

)

Composing Applications
componentC.wasm

componentA componentB

R -Go

Core Wasm Module Core Wasm Module

O

componentize-py

* Tool to convert a Python application to a WebAssembly
component.

It takes the following as input:
* a WIT file or directory
» the name of a WIT world defined in the above file or directory
* the name of a Python module which targets said world

* a list of directories in which to find the Python module and its
dependencies

github.com/bytecodealliance/componentize-py

Check out Spin!

Thank Youl

linkedin.com/in/sohanmaheshwar/

developer.fermyon.com

FERMYON

