
Build a Serverless WebAssembly 
App in Python using Spin 

Sohan Maheshwar

Lead Developer Advocate @ Fermyon



The next wave of cloud 
compute will be powered 
by WebAssembly



What is it?
How and 

when to use 
it?

How will this 
change 

everything?



What Is 
WebAssembly?
The boring answer: It’s just another bytecode format



A few things to know about 
WebAssembly

• Wasm is just another name for it

• Designed as a portable compilation target



Wasm is another bytecode format

Wasm Module



A few things to know about 
WebAssembly

• Wasm is just another name for it

• Designed as a portable compilation target

• Originates from the browser, now also available outside
• "compile once" and then run that code on any number of 

targets 





Code Wasm
VM

Wasm

Compile Run

Compile and Run



WASI: A new kind of System Interface

TL;DR: it allows you to run WebAssembly outside of the 
browser

• Access to several operating-system-like features, including 
files and filesystems, clocks, and random numbers
• Independent of browsers, so it doesn't depend on Web 

APIs or JS

• It extends Wasm’s sandboxing to include I/O.



Compilation and Language Support

https://www.fermyon.com/wasm-languages/webassembly-language-support/



How do I compile my 
code to Wasm?



Rust has great Wasm support



Interpreted languages 
are a little more tricky



You need to compile the interpreter to 
Wasm



Getting started with Wasm



Introducing Spin

• The open-source tool for 
building WebAssembly 
serverless apps
• Create a new serverless with just 

a few commands.

https://developer.fermyon.com/spin

https://developer.fermyon.com/spin


The framework to compose serverless 
WebAssembly apps.

OPEN SOURCE 15+ LANGUAGES

SIMPLE CLI4.6K GITHUB ★

github.com/fermyon/spin





DEMO
developer.fermyon.com/spin



4 things making WebAssembly great

Binary Size

Rust hello-world ~2MB

AOT compiled ~300KB

Basic Spin http api
~2.3MB JIT
~1.1MB AOT

*https://00f.net/2023/01/04/webassembly-benchmark-2023/



4 things making WebAssembly great

Binary Size

Rust hello-world ~2MB

AOT compiled ~300KB

Basic Spin http api
~2.3MB JIT
~1.1MB AOT

Startup Time

Startup times comparable 
with natively compiled 
code

Only 2.3x slower than 
native*

*https://00f.net/2023/01/04/webassembly-benchmark-2023/



4 things making WebAssembly great

Binary Size

Rust hello-world ~2MB

AOT compiled ~300KB

Basic Spin http api
~2.3MB JIT
~1.1MB AOT

Startup Time

Startup times comparable 
with natively compiled 
code

Only 2.3x slower than 
native*

Portability

Build once, run anywhere!

Same build (JIT) works 
across OS and platform 
arc

Security

Sandboxed execution

Capability based security 
model

*https://00f.net/2023/01/04/webassembly-benchmark-2023/



How this will change 
cloud computing
Gradually, then suddenly





No more clunky 
containers





Fix serverless







DEMO
fermyon.com/serverless-ai



Component Model

Your JS App

I need a 
YAML parser

& a Date 
Formatter

Rust YAML 
Parser

Python Date 
Formatter

I can 
do 

YAML!

I can 
format 
dates!

• Write code in whatever 
language you want

• Use libraries from all over 
without even knowing what 
language they were written 
in!

• Wasm will take care of the 
rest.



Wasm Module

… and many more!

Core Wasm Module

Polyglot

Portable

Isolated

Fast 
Startup

Open 
Standard

Small 
.wasm



Composing Applications



Composing Applications



componentize-py

• Tool to convert a Python application to a WebAssembly 
component. 

• It takes the following as input:
• a WIT file or directory
• the name of a WIT world defined in the above file or directory
• the name of a Python module which targets said world
• a list of directories in which to find the Python module and its 

dependencies

github.com/bytecodealliance/componentize-py



Thank You!
linkedin.com/in/sohanmaheshwar/

developer.fermyon.com

Join our Discord server!

Check out Spin!


