/)

Writing Custom eBPF
Programs for
Observability

Sooter Saalu

What is eBPF?

e The Extended Berkeley Packet Filter is a framework for writing sandboxed programs that can be
executed within your Linux kernel space without modifying the kernel itself

e Itgivesyou ageneral-purpose tool that can observe, control and enhance kernel behavior

https://ebpf.io/

rce =T
.

= eBPF = eBPF
== Progranm == Program
e g g §
—] Program | Maps [S J
Development |
[W eBPF Go Library J sendmsg() recvmsg()
I
[Syscall J L Syscall J
— l e = ﬁ;eiiPF
X Q eBPF
- C [ﬁeBPF Verifier] L ﬁ(ejp}: Sockets]
C o~
T gé [ﬁeaPF JIT Compiler } [TCP/IP]

Runtime

Why it's a game-changer for observability

e Kernel-level visibility
e No code instrumentation needed

e Lowoverhead

Real-world use cases

e Tracingsyscalls =>>>> Falco example

e Network visibility =>>>> Netflix example

e Performance profiling =>>>> GroundCover example

e Security monitoring =>>>> Apple example

https://falco.org/blog/tracing-syscalls-using-ebpf-part-1/
https://netflixtechblog.com/how-netflix-uses-ebpf-flow-logs-at-scale-for-network-insight-e3ea997dca96
https://www.groundcover.com/ebpf/ebpf-profiling
https://www.youtube.com/watch?v=ZBlJSr6XkN8

Demo: Packet Logger

https://github.com/Soot3/ebpf-presentation
https://github.com/Soot3/ebpf-presentation

Alternate ways

e Apart from native C ebpf programs:
o Python —--BCC (Single Python file with embedded C)

o Go —-- Cilium library
o Rust —-- Aya

e Easier with Abstractions however Performance!! - Larger footprint, delayed execution

https://github.com/iovisor/bcc
https://github.com/cilium/ebpf
https://github.com/aya-rs/aya

Demo: Tracing openat() Syscalls
with BCC

https://github.com/Soot3/ebpf-presentation
https://github.com/Soot3/ebpf-presentation

EXtending ebpf e OpenTelemetry eBPF collector

e eBPF Prometheus exporter

e GrafanaBeyla (eBPF based auto
instrumentation tool)

https://github.com/open-telemetry/opentelemetry-network
https://github.com/cloudflare/ebpf_exporter
https://github.com/grafana/beyla

Use
Cases

User
Space

Kernel

Networking

A eBPF

Projects

Kernel Runtime

Security Observability &

Tracing

ke & >

Ratran % O NIXIE

Verifier & JIT (O
Runtime
Maps
y =
Kernel Helper API 82 N

- Tracing

aea" - Profiling

- Monitoring

Applicatic;n

- Observability
- Security Controls
- Networking
aeBPF - Network Security
- Load Balancing
- Behavioral Security

eBPF ecosystem

e Observability and Monitoring:
o Pixie, Parca, Pyroscope, DeepFlow
e Networking:
o Cilium, Calico, Katran, Kyanos
e Security and Runtime Enforcement:
o FEalco, Tetragon, Tracee, Kubescape
e eBPF Program Management:
o L3AF, bpfman, BumbleBee

https://ebpf.io/applications/
https://px.dev/
https://parca.dev/
https://pyroscope.io/
https://deepflow.yunshan.net/community.html
https://cilium.io/
https://tigera.io/project-calico
https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://kyanos.io/
https://falco.org/
https://tetragon.io/
https://github.com/aquasecurity/tracee
https://kubescape.io/
https://l3af.io/
https://bpfman.io/
https://bumblebee.io/

More information

eBPF documentary website
eBPF internals (slides)

Learning eBPF (Book)
eBPF for FAANG

https://ebpfdocumentary.com/
https://www.usenix.org/conference/lisa21/presentation/gregg-bpf
https://isovalent.com/books/learning-ebpf
https://deploy.equinix.com/blog/ebpf-explained-enhancing-system-observability-and-monitoring/

Thank You

CONF42

