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Quick Introduction!

SOURAV SAHA – Research Engineer @ NEC Corporation

Hello, I am a software professional with 11+ years of working experience across diverse areas of HPC, Vector
Supercomputing, Distributed Programming, Big Data and Machine Learning. Currently, my team at NEC R&D Lab,
Japan, is researching various data processing-related algorithms. Blending the mixture of different niche technologies
related to compiler framework, high-performance computing, and multi-threaded programming, we have developed a
Python library named FireDucks with highly compatible pandas APIs for DataFrame-related operations.

https://www.nec.com/en/global/solutions/hpc/sx/index.html

Data 
Scientists 
often face 
issues with 
slow 
performance 
of pandas

we wanted to 
develop some library 

using compiler 
technology

we wanted to 
speed-up python

User Program

compiler
technologies

FireDucks

groupby join

dropna filter

sort corr

pandas APIMr. Kazuhisa Ishizaka
(Primary Author)

https://www.linkedin.com/in/sourav-%E3%82%BD%E3%82%A6%E3%83%A9%E3%83%96-saha-%E3%82%B5%E3%83%8F-a5750259/

https://twitter.com/SouravSaha97589

https://twitter.com/SouravSaha97589
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Workflow of a Data Scientist

collection 
of raw 
data

deploy

almost 75% efforts of a Data 

Scientist spent on data 

preparation

Anaconda: 
The State of Data Science 2020

Analysis

data
lake

data
preparation

AI/ML
training model



© NEC Corporation 20235

About Pandas (1/2)

 

◼ It (mostly) doesn’t support parallel computation.

◼ It doesn’t have any auto-optimization feature.

◼ Hence, it is not suitable for processing large datasets.

◼ Very slow execution reduces the efficiency of a data 

analyst.

◼ Long-running execution 
◼ produces higher cloud costs

◼ attributes to higher CO2 emission 
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numpy
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tensorflow
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pytorch

Monthly download from pypi.org
(Data Analytics Libraries)

◆ Most popular Python library for data analytics.
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About Pandas (2/2)
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pytorch

Monthly download from pypi.org
(Data Analytics Libraries)

◆ Most popular Python library for data analytics.

The way of implementing a query in pandas-like library (that 
does not support query optimization) heavily impacts its 
performance!!

• We will discuss a couple of approaches to improve the 
performance related to computational time and memory of 
a query written in pandas, when processing large-scale 
data.

• We will also discuss how those approaches can be 
automated using compiler technologies.



Performance Challenges & Best Practices to 
follow
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Quiz: Which one is a better code?

def foo(filename):
df = pd.read_csv(filename)
t1 = df.drop_duplicates()
t2 = t1.sort_values(“B”)
t3 = t2.head(2)
return t3

def foo(filename):
return (

pd.read_csv(filename)
.drop_duplicates()
.sort_values(“B”)
.head(2)

)

OR
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Best Practice (1): importance of chained expression

A B C

u 0.91 1

a 1.00 4

a 1.00 4

o 0.24 0

o 0.24 0

e 0.43 1

u 0.91 1

e 0.20 2

o 0.24 0

a 1.00 4

A B C

u 0.91 1

a 1.00 4

o 0.24 0

e 0.43 1

e 0.20 2

A B C

a 1.00 4

u 0.91 1

e 0.43 1

o 0.24 0

e 0.20 2

A B C

a 1.00 4

u 0.91 1

def foo(filename):
df = pd.read_csv(filename)
t1 = df.drop_duplicates()
t2 = t1.sort_values(“B”)
t3 = t2.head(2)
return t3

drop_duplicates sort head(2)

df: ~16 GB

t1: ~8 GB t3: ~8 GB

t4: ~x KB

def foo(filename):
return (
pd.read_csv(filename)
.drop_duplicates()
.sort_values(“B”)
.head(2)

)

re-write using chained 
expression

A B C

u 0.91 1

a 1.00 4

a 1.00 4

o 0.24 0

o 0.24 0

e 0.43 1

u 0.91 1

e 0.20 2

o 0.24 0

a 1.00 4

A B C

u 0.91 1

a 1.00 4

o 0.24 0

e 0.43 1

e 0.20 2

A B C

a 1.00 4

u 0.91 1

e 0.43 1

o 0.24 0

e 0.20 2

A B C

a 1.00 4

u 0.91 1

drop_duplicates sort head(2)
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Quiz: Which one is a better code?

res = df.sort_values(by=“B”)[“A”].head()

tmp = df[[“A”, “B”]]
res = tmp.sort_values(by=“B”)[“A”].head()

OR
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Domain Specific Optimization: Projection Pushdown

index a b c d e f g h i j

0 1 A 1 3 4 2 4 1 3 7
1 6 B 2 3 6 3 4 7 8 4
2 5 D 2 4 7 2 3 3 7 8
3 2 A 3 2 8 5 3 2 4 5
4 3 C 5 9 2 3 2 6 2 6
5 8 B 8 1 5 7 1 5 8 3

sorted = df.sort_values(“b”)
-> sidx = [0, 3,1, 5, 4, 2] # get sorted index
-> sorted = df.take(sidx) # materialize result 

index a b c d e f g h i j

0 1 A 1 3 4 2 4 1 3 7
3 2 A 3 2 8 5 3 2 4 5
1 6 B 2 3 6 3 4 7 8 4
5 8 B 8 1 5 7 1 5 8 3
4 3 C 5 9 2 3 2 6 2 6
2 5 D 2 4 7 2 3 3 7 8

index a

0 1
3 2
1 6
5 8
4 3
2 5

result = sorted[“a”]
result = sorted[“a”]

index a b

0 1 A
1 6 B
2 5 D
3 2 A
4 3 C
5 8 B

index a b

0 1 A
3 2 A
1 6 B
5 8 B
4 3 C
2 5 D

index a

0 1
3 2
1 6
5 8
4 3
2 5

tmp = df[[“a”, “b”]]

sorted = tmp.sort_values(“b”)
-> sidx = [0, 3, 1, 5, 4, 2]
-> sorted = tmp.take(sidx)

sorted = df.sort_values("b") 
result = sorted["a"] 

tmp = df[["a","b"]] 
sorted = tmp.sort_values("b") 
result = sorted["a"]

projection pushdown

Waste of computational memory 
and execution time
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Quiz: What is the performance issue with this data flow?

ID E_Name Gender C_Code

1 A Male 1

2 B Male 1

3 C Female 2

4 E Male 2

5 F Female 1

6 G Female 2

7 H Male 1

8 I Female 2

C_Code C_Name

1 India

2 Japan

ID E_Name Gender C_Code C_Name

1 A Male 1 India

2 B Male 1 India

3 C Female 2 Japan

4 E Male 2 Japan

5 F Female 1 India

6 G Female 2 Japan

7 H Male 1 India

8 I Female 2 Japan

ID E_Name Gender C_Code C_Name

1 A Male 1 India

2 B Male 1 India

4 E Male 2 Japan

7 H Male 1 India

filter

m = employee.merge(country, on=“C_Code”)
f = m[m[“Gender”] == “Male”]
r = f.groupby(“C_Name”)[“E_Name”].count()
print(r)

employee

country

merge

C_Name E_Name

India 3

Japan 2

groupby-
count

• sample case: filter after merge operation
• merge is an expensive operation, as it involves 

data copy.
• performing merge operation on a large dataset 

and then filtering the output would involve 
unnecessary costs in data-copy.

ID E_Name Gender C_Code C_Name

1 A Male 1 India

2 B Male 1 India

3 C Female 2 Japan

4 E Male 2 Japan

5 F Female 1 India

6 G Female 2 Japan

7 H Male 1 India

8 I Female 2 Japan
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Domain Specific Optimization: Predicate Pushdown

ID Name Gender C_Code C_Name

1 A Male 1 India

2 B Male 1 India

4 E Male 2 Japan

7 H Male 1 India

m = employee.merge(country, on=“C_Code”)
f = m[m[“Gender”] == “Male”]
r = f.groupby(“C_Name”)[“E_Name”].count()
print(r)

f = employee[employee[“Gender”] == “Male”]
m = f.merge(country, on=“C_Code”)
r = m.groupby(“C_Name”)[“E_Name”].count()
print(r)

ID E_Name Gender C_Code

1 A Male 1

2 B Male 1

4 E Male 2

7 H Male 1

ID E_Name Gender C_Code

1 A Male 1

2 B Male 1

3 C Female 2

4 E Male 2

5 F Female 1

6 G Female 2

7 H Male 1

8 I Female 2

C_Code C_Name

1 India

2 Japan

employee

country

C_Name E_Name

India 3

Japan 2

groupby-
count

filter

merge

predicate pushdown
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Best Practice (2): importance of execution order

A B C D E

df.sort_values(“A”)
.query(“B > 1”)[“E”]
.head(2)

A B C D E

df.loc[:, [“A”, “B”, “E”]]
.query(“B > 1”)
.sort_values(“A”)[“E”]
.head(2)

A B C D E E

E

A B C D E A B E

A B E E

E

sort filter projection head
projection sort projection head

reduction in the 
number of columns

(projection 
pushdown)

filter

reduction in the 
number of rows

(predicate 
pushdown)SAMPLE QUERY

OPTIMIZED 
QUERY

A B E

※ sort-order: yellow->red->green->blue
※ B=1for darker shade, B=2 for lighter 
shade

not required



Introducing FireDucks
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Introducing FireDucks

Generated 

IR-OPs

User Program

Optimization

Passes

IR Builder

Multi-core Kernel

Executor

result = df.sort_values(“A”)
.query(“B > 1”)[“E”]
.head(2)

%v2 = “sort_values_op"(%v1, “A") 
%v3 = "filter_op"(%v2, “B > 1”)
%v4 = “project_op”(%v3, [“E”])
%v5 = “slice_op”(%v4, 2)

%t1 = “project_op”(%v1, [“A”, “B”, “E”])
%t2 = "filter_op"(%t1, “B > 1”)
%t3 = “sort_values_op"(%t2, “A") 
%t4 = “project_op”(%t3, [“E”])
%t5 = “slice_op”(%t4, 2)

result = df.loc[:, [“A”, “B”, “E”]]
.query(“B > 1”)
.sort_values(“A”)[“E”]
.head(2)

print (result)

※IR: Intermediate Representation

Primary Objective: Write Once, Execute Anywhere

(Flexible IR Engine for DataFrame) is a high-performance compiler-accelerated 
DataFrame library with highly compatible pandas APIs.
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Why FireDucks?

(Flexible IR Engine for DataFrame) is a high-
performance compiler-accelerated DataFrame library with 
highly compatible pandas APIs.

Speed: significantly faster than pandas 

Ease of use: drop-in replacement of pandas 

• FireDucks is multithreaded to fully exploit the modern processor
• Lazy execution model with Just-In-Time optimization using a defined-by-run 

mechanism supported by MLIR (a subproject of LLVM).
• supports both lazy and non-lazy execution models without modifying user 

programs (same API). 

• FireDucks is highly compatible with pandas API
• seamless integration is possible not only for an existing pandas 

program but also for any external libraries (like seaborn, scikit-
learn, etc.) that internally use pandas dataframes.

• No extra learning is required
• No code modification is required

Lazy
JIT optimization

Multi-Threaded

Eco-friendly

lightning-fast

data analysis

No new learning

 

Cloud-friendly

※IR: Intermediate Representation
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Let’s Have a Quick Demo!

pandas FireDucks

button to 
start 
execution

pd.read_csv(“data.csv”).rolling(60).mean()[“Close”].tail(1000).plot()

Program to 
calculate 
moving average

pandas: 4.06s

FireDucks: 275ms

~15x

the difference is only in the import

import pandas as pd import fireducks.pandas as pd

data.csv: 
Bitcoin Historical Data

https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data?select=bitstampUSD_1-min_data_2012-01-01_to_2021-03-31.csv
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Usage of FireDucks

2. Import Hook

$ python –m fireducks.pandas program.py 

FireDucks provides command line option to automatically replace “pandas” with “fireducks.pandas”

zero code modification

1. Explicit Import

# import pandas as pd
import fireducks.pandas as pd

easy to import

simply change the import statement

3. Notebook Extension

%load_ext fireducks.pandas
import pandas as pd

FireDucks provides simple import extension for interative notebooks.

simple integration in a notebook

import mod_A
import mod_B
import mod_C
import pandas as 
pd
:

import pandas as pd
:

import pandas as pd
:

import pandas as pd
:

mod_A.py

mod_B.py

mod_C.py

program.py

※ Linux Only, Supported for Python 3.9 to Python 3.12
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Seamless Integration with pandas: Challenge

Three most common challenges in switching 

from pandas:

◼ Needs to learn new library and their interfaces.

◼ Manual fallback to pandas when the target library 

doesn’t support a method used in an existing pandas 

application.

◼ Performance can be evaluated, and results can be 

tested after the migration is completed.

library - A pandas

from_pandas()

to_pandas()

COST 
PERFORMANCE

highly-
compatible, but 
not that fast

faster, but not enough 
compatible (mainly 
suitable for multi-node 
computing)

blazingly fast for 
single-node 
computation, but highly 
incompatible

faster, but not 
enough compatible 
(mainly suitable for 
multi-node 
computing)
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Seamless Integration with pandas: Demo

import pandas as pd
print(f"evaluation with {pd.__name__}")

start = time.time()
# Data Loading
t1 = time.time()
df = pd.read_parquet(

"nyc_parking_violations_2022.parquet",
columns=["Registration State", "Violation Description",

"Vehicle Body Type", "Issue Date", "Summons Number"]
)
print(df.shape)
print(f"data-loading time: {time.time() - t1} sec")

# Q1: Which parking violation is most commonly committed by vehicles from various U.S states?
t2 = time.time()
r1 = (df[["Registration State", "Violation Description"]]
.value_counts()
.groupby("Registration State")
.head(1)
.sort_index()
.reset_index()
)
print(r1.shape)
print(f"Query #1 processing time: {time.time() - t2} sec")

end = time.time()
print(f"total time taken: {end - start} sec")

$ python nyc_demo.py
evaluation with pandas:
(15435607, 5)
data-loading time: 2.4112608432769775 sec
(65, 3)
Query #1 processing time: 2.8894600868225098 sec
total time taken: 5.300761699676514 sec

$ python -mfireducks.pandas nyc_demo.py
(15435607, 5)
data-loading time: 0.3567678928375244 sec
(65, 3)
Query #1 processing time: 0.05789780616760254 sec
total time taken: 0.4147005081176758 sec

~8x

Refer: https://github.com/fireducks-dev/fireducks/blob/main/notebooks/nyc_demo/fireducks_pandas_nyc_demo.ipynb

https://github.com/fireducks-dev/fireducks/blob/main/notebooks/nyc_demo/fireducks_pandas_nyc_demo.ipynb
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Optimization Features

User Program

Runtime
Compiler

FireDucks

Library Function

Core CoreCore Core

All cores used

memory

multithreaded C++ execution kernel

compiler optimized program

python frontend with JIT compiler

1. Compiler Specific Optimizations: Common Sub-
expression Elimination, Dead-code Elimination, Constant 
Folding etc.

2. Domain Specific Optimization: Optimization at query-
level: reordering instructions etc.

3. Pandas Specific Optimization: selection of suitable 
pandas APIs, selection of suitable parameter etc.

1. Multi-threaded Computation: Leverage all the available 
computational cores.

2. Efficient Memory Management: Data Structures backed 
by Apache Arrow

3. Optimized Kernels: Patented algorithms for Database like 
kernel operations: like sorting, join, filter, groupby, dropna
etc. developed in C++ from scratch.
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Compiler Specific Optimizations 

# Find year and month-wise average sales
df[“year”] = pd.to_datetime(df[“time”]).dt.year
df[“month”] = pd.to_datetime(df[“time”]).dt.month
r = df.groupby([“year”, “month”])[“sales”].mean()

s = pd.to_datetime(df[“time”])
df[“year”] = s.dt.year
df[“month”] = s.dt.month
r = df.groupby([“year”, “month”])[“sales”].mean()

def func(x: pd.DataFrame, y: pd.DataFrame): 
merged = x.merge(y, on="key") 
sorted = merged.sort_values(by="key")
return merged.groupby("key").max() 

def func(x: pd.DataFrame, y: pd.DataFrame): 
merged = x.merge(y, on="key") 
return merged.groupby("key").max()

Common Sub-expression Elimination Dead Code Elimination

Have you ever thought of speeding up your data analysis in pandas with a compiler?

• Common mistakes often found in Kaggle notebooks
• same operation on the same data repeatedly
• computation without further usage 

The in-built compiler of FireDucks can 
auto-detect such issues and optimize 

at runtime.

https://medium.com/@qsourav/have-you-ever-thought-of-speeding-up-your-data-analysis-in-pandas-with-a-compiler-198d2b6da0b8
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Domain Specific Optimizations: Projection Pushdown, Predicate Pushdown (1/2)

import datetime
import pandas as pd

def tpch_q3():
    (
        pd.read_parquet("customer.parquet")
          .merge(pd.read_parquet("orders.parquet"), left_on="c_custkey", right_on="o_custkey")
          .merge(pd.read_parquet("lineitem.parquet"), left_on="o_orderkey", right_on="l_orderkey")
          .pipe(lambda df: df[df["c_mktsegment"] == "BUILDING"])
          .pipe(lambda df: df[df["o_orderdate"] < datetime.date(1995, 3, 15)])
          .pipe(lambda df: df[df["l_shipdate"] > datetime.date(1995, 3, 15)])
          .assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))
          .groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)
          .agg({"revenue": "sum"})[["l_orderkey", "revenue", "o_orderdate", "o_shippriority"]]
          .sort_values(["revenue", "o_orderdate"], ascending=[False, True])
          .reset_index(drop=True)            
          .head(10)
          .to_parquet("result.parquet")     
    )

$ python q3.py: 
exec-time: 203 seconds; 
memory consumption: 60 GB

$ python –mfireducks.pandas q3.py: 
exec-time: 4.24 seconds; 
memory consumption: 3.3 GB

Scale Factor: 10
Number of logical cores: 96 ※ Shipping Priority Query (Q3) from TPC-H benchmark:

This query retrieves the 10 unshipped orders with the highest value.

https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf#page=33
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Domain Specific Optimizations: Projection Pushdown, Predicate Pushdown (2/2)

import datetime
import pandas as pd

def tpch_optimized_q3():
# load only required columns from respective tables
req_customer_cols = ["c_custkey", "c_mktsegment"] # (2/8)
req_lineitem_cols = ["l_orderkey", "l_shipdate", "l_extendedprice", "l_discount"] #(4/16)
req_orders_cols = ["o_custkey", "o_orderkey", "o_orderdate", "o_shippriority"] #(4/9)
customer = pd.read_parquet("customer.parquet", columns = req_customer_cols)
lineitem = pd.read_parquet("lineitem.parquet", columns = req_lineitem_cols)
orders = pd.read_parquet("orders.parquet", columns = req_orders_cols)

# advanced-filter: to reduce scope of “customer” table to be processed
f_cust = customer[customer["c_mktsegment"] == "BUILDING"]

# advanced-filter: to reduce scope of “orders” table to be processed
f_ord = orders[orders["o_orderdate"] < datetime.date(1995, 3, 15)]

# advanced-filter: to reduce scope of “lineitem” table to be processed
f_litem = lineitem[lineitem["l_shipdate"] > datetime.date(1995, 3, 15)]

(
f_cust.merge(f_ord, left_on="c_custkey", right_on="o_custkey")

.merge(f_litem, left_on="o_orderkey", right_on="l_orderkey")

.assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))

.groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)

.agg({"revenue": "sum"})[["l_orderkey", "revenue", "o_orderdate", "o_shippriority"]]

.sort_values(["revenue", "o_orderdate"], ascending=[False, True])

.reset_index(drop=True)

.head(10)

.to_parquet("result.parquet")
)

$ python opt_q3.py: 
exec-time: 13 seconds; 
memory consumption: 5.5 GB

$ python –mfireducks.pandas opt_q3.py: 
exec-time: 4.8 seconds; 
memory consumption: 3.4 GB

manual optimization

Refer: https://github.com/fireducks-dev/fireducks/blob/main/notebooks/tpch-query3-pandas-fireducks-cudf.ipynb

https://github.com/fireducks-dev/fireducks/blob/main/notebooks/tpch-query3-pandas-fireducks-cudf.ipynb
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Pandas Specific Optimization – Parameter Tuning

res = (
employee.groupby(“department")[“salary"]

.mean()
.sort_values(ascending=False)

)

# department-wise average salaries sorted in descending order

department salary (USD)

IT 85,000

Admin 60,000

Finance 100,000

IT 81,000

Finance 95,000

Corporate 78,000

Sales 80,000

department salary (USD)

IT 85,000

IT 81,000

department salary (USD)

Admin 60,000

department salary (USD)

Finance 100,000

Finance 95,000

department salary (USD)

Corporate 78,000

department salary (USD)

Sales 80,000

department salary 
(USD)

IT 83,000

Admin 60,000

Finance 97,500

Corporate 78,000

Sales 80,000

department salary 
(USD)

Admin 60,000

Corporate 78,000

Finance 97,500

IT 83,000

Sales 80,000

department salary 
(USD)

Finance 97,500

IT 83,000

Sales 80,000

Corporate 78,000

Admin 60,000

res = (
employee.groupby(“department“, sort=False)[“salary"]

.mean()
.sort_values(ascending=False)

)

employee table

creating groups

group-wise average-
salary

group-wise average-
salary 

sorted by “department”

group-wise average-
salary 

sorted by “department”

groupby(“department“, sort=True)

parameter tuning in pandas

df.groupby(["A", "B"])["C"]
.mean()
.sort_values(ascending=Fals

e)

df.groupby(["A", "B"], 
sort=False)["C"]

.mean()

.sort_values(ascending=False)

~50 sec ~30 sec

100M 
samples with 
high-
cardinality
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Benchmark (1): DB-Benchmark 

Database-like ops benchmark (https://duckdblabs.github.io/db-benchmark) 
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General Overview: DataFrame Libraries

pandas-compatibility

single-node
performance

(PySpark)

FireDucks

highly-compatiblelook-alike APISQL

(Polars)

(cuDF)
GPU

multi-node 
computation is the 
main target

single-node 
computation is the 
main target
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Benchmark (2): Speedup from pandas in TPC-H benchmark

FireDucks is >1000x faster than pandas at max AWS EC2 m7i.8xlarge: 
Intel(R) Xeon(R) Platinum 
8488C (32cores), 128 GB

Server

Comparison of 
DataFrame libraries
(average speedup)

FireDucks

Polars

Modin

125x

57x

1x

fa
s
te

r 
th

a
n

 p
a
n

d
a
s

s
lo

w
e
r
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Scalability: DuckDB vs Polars vs FireDucks

0

2

4

6

8

0 4 8 12 16 20 24 28 32

pandas duckdb polars fireducks

0

2

4

6

8

0 4 8 12 16 20 24 28 32

pandas duckdb polars fireducks

Speedup rate per core 
(including IO)

Speedup rate per core 
(excluding IO)

number of cores number of cores

1.3x
0.94x

6.5x
5.9x

Libraries that support multi-threading will benefit from a good machine
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Resource on FireDucks

https://fireducks-dev.github.io/

Web site (User guide, benchmark, blog)

X(twitter) (Release information)

https://x.com/fireducksdev

Github (Issue report)

https://github.com/fireducks-dev/fireducks

Q/A, communication

https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w
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◆Focus more on in-depth data 
exploration using “pandas”.

◆Let the “FireDucks” take care 
of the optimization for you.

◆Enjoy Green Computing!

Thank You!



Frequently Asked Questions
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FAQ: Why FireDucks is highly compatible with pandas?

library - A pandas

from_pandas()

to_pandas()

%load_ext fireducks.pandas ← notebook extension for importhook

import pandas as pd

import numpy as np

%%fireducks.profile ← notebook specific profiler

df = pd.DataFrame({

"id": np.random.choice(list("abcdef"), 10000),                        

"val": np.random.choice(100, 10000)

})

r1 =( 

df.sort_values("id")

.groupby("id")

.head(2)

.reset_index(drop=True)

)

r1["val"] = r1["val"].cumsum()

r1.describe()

When running a python script/program, you 
may like to set the environment variable to get 

fallback warning logs:
FIREDUCKS_FLAGS=“-Wfallback” 

Raise feature request when you encounter 
some expensive fallback hindering your 
program performance!

Directly communicate with us over our slack 
channel for any performance or API related 
queries!

Python Frontend
(Pandas API)

fallback

IR Builder

FireDucks

pd.from_pandas(r1[“val”].to_pandas().cumsum())

https://github.com/fireducks-dev/fireducks/issues
https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w
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FAQ: How to evaluate Lazy Execution?

def foo(employee, country):
stime = time.time()
m = employee.merge(country, on=“C_Code”)
r = m[m[“Gender”] == “Male”]
print(f”fireducks time: {time.time() – stime} sec”)
return r

IR Builder

create_data_op(…)
merge_op(…)
filter_op(…)

def foo(employee, country):
employee._evaluate()
country._evaluate()
stime = time.time()
m = employee.merge(country, on=“C_Code”)
r = m[m[“Gender”] == “Male”]
r._evaluate()
print(f”fireducks time: {time.time() – stime} sec”)
return r

fireducks time: 0.0000123 sec

fireducks time: 0.02372143 sec

FIREDUCKS_FLAGS="--benchmark-mode”

Use this to disable lazy-execution mode 
when you do not want to make any 
changes in your existing application 
during performance evaluation.
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FAQ: How to configure number of cores to be used?

OMP_NUM_THREADS=1

Use this to stop parallel execution, or configure this with the intended 
number of cores to be used

Alternatively, you can use the Linux taskset command to bind your 
program with specific CPU cores.
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