

Introducing FireDucks: A Multithreaded DataFrame Library with JIT compiler

February 06, 2025 Sourav Saha (NEC)

Agenda

♦ About Pandas

- Tips and Tricks for Optimizing Large-scale Data processing workload
- FireDucks and Its Offerings
- FireDucks Optimization Strategy
- Evaluation Benchmarks
- Resources on FireDucks
- Test Drive
- FAQs

Quick Introduction!

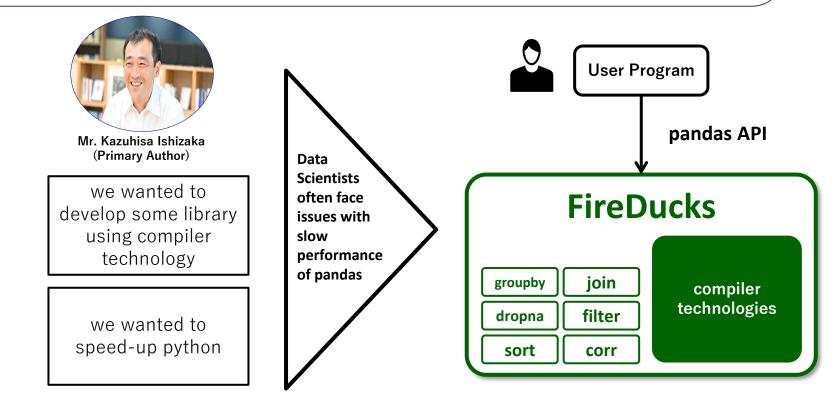
SOURAV SAHA – Research Engineer @ NEC Corporation

https://www.linkedin.com/in/sourav-%E3%82%BD%E3%82%A6%E3%83%A9%E3%83%96-saha-%E3%82%B5%E3%83%8F-a5750259/

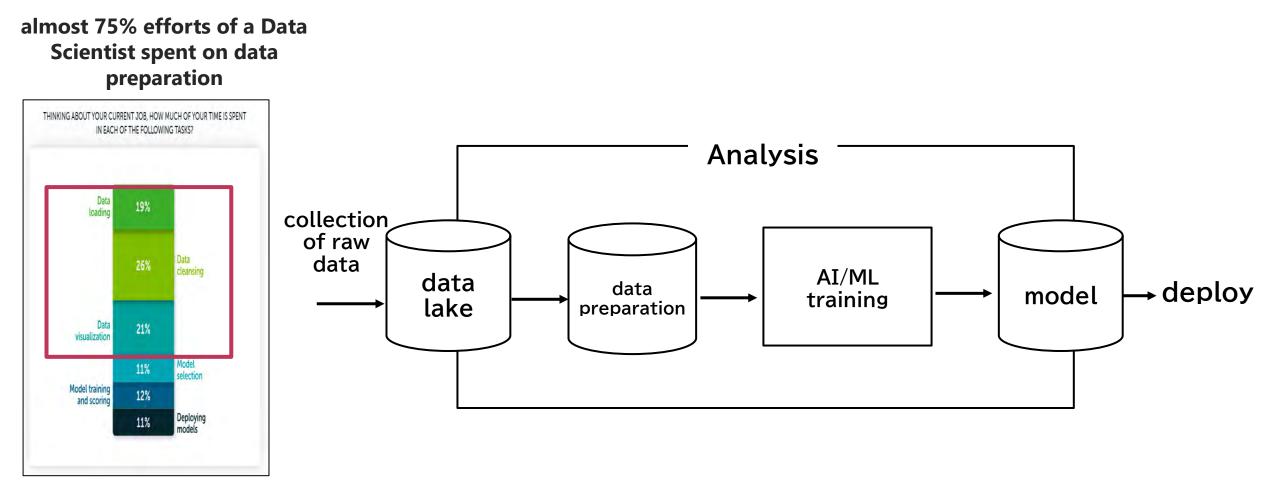
X <u>https://twitter.com/SouravSaha97589</u>

Hello, I am a software professional with 11+ years of working experience across diverse areas of **HPC**, **Vector Supercomputing**, **Distributed Programming**, **Big Data and Machine Learning**. Currently, my team at NEC R&D Lab, Japan, is researching various data processing-related algorithms. Blending the mixture of different niche technologies related to compiler framework, high-performance computing, and multi-threaded programming, we have developed a Python library named FireDucks with highly compatible pandas APIs for DataFrame-related operations.

https://www.nec.com/en/global/solutions/hpc/sx/index.html

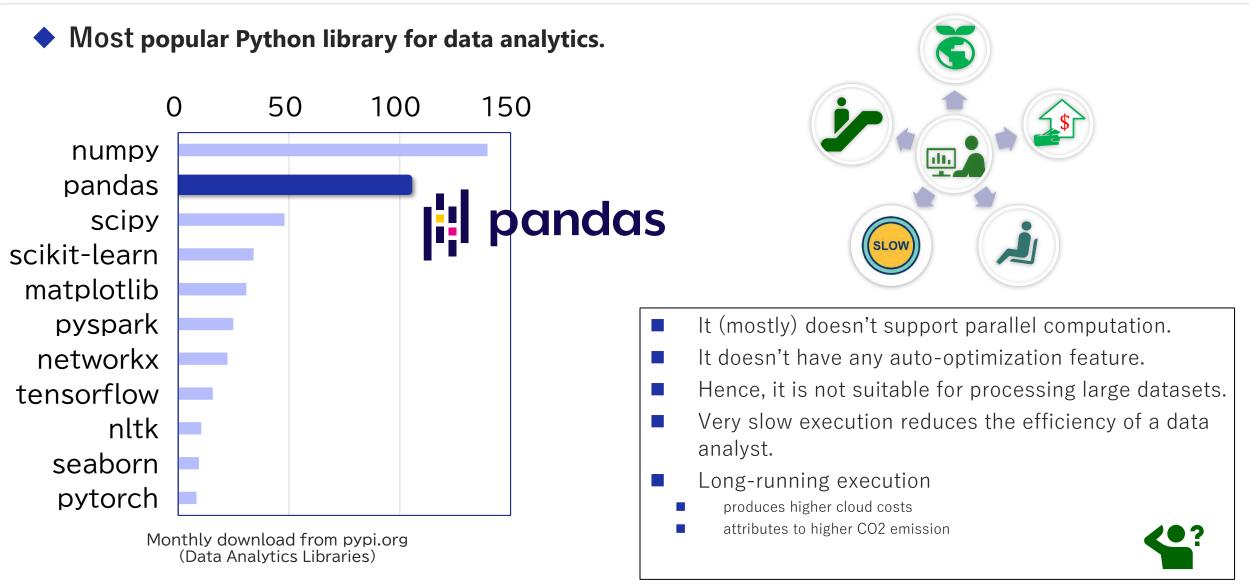


Workflow of a Data Scientist



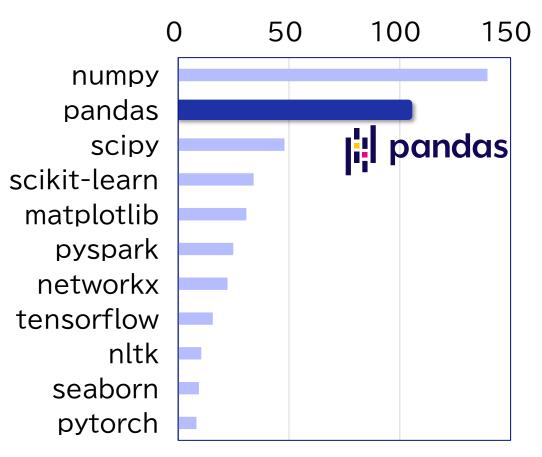
Anaconda: The State of Data Science 2020

About Pandas (1/2)



About Pandas (2/2)

Most popular Python library for data analytics.

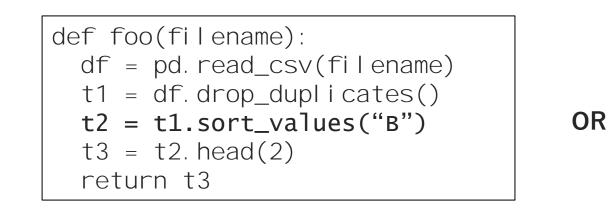


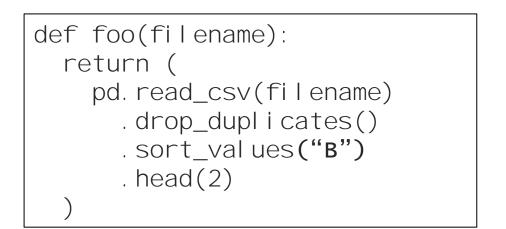
Monthly download from pypi.org (Data Analytics Libraries) The way of implementing a query in pandas-like library (that does not support query optimization) heavily impacts its performance!!

- We will discuss a couple of approaches to improve the performance related to computational time and memory of a query written in pandas, when processing large-scale data.
- We will also discuss how those approaches can be automated using compiler technologies.

Performance Challenges & Best Practices to follow

Quiz: Which one is a better code?





Best Practice (1): importance of chained expression



def foo(filename):
return (
pd. read_cs∨(filename)
.drop_duplicates()
. sort_val ues("B")
. head(2)
)

А	В	С										
u	0.91	1										
а	1.00	4	А	В	С		А	В	С			
а	1.00	4		0.91	1			1.00	4			
0	0.24	0	u	1.00	4		a	0.91	4	Α	В	С
0	0.24	0	а				u			а	1.00	4
е	0.43	1	0	0.24	0		е	0.43	1	u	0.91	1
и	0.91	1	е	0.43	1		0	0.24	0			
е	0.20	2	е	0.20	2		е	0.20	2			
0	0.24	0										
а	1.00	4										
	drop_duplicates sort head(2)											

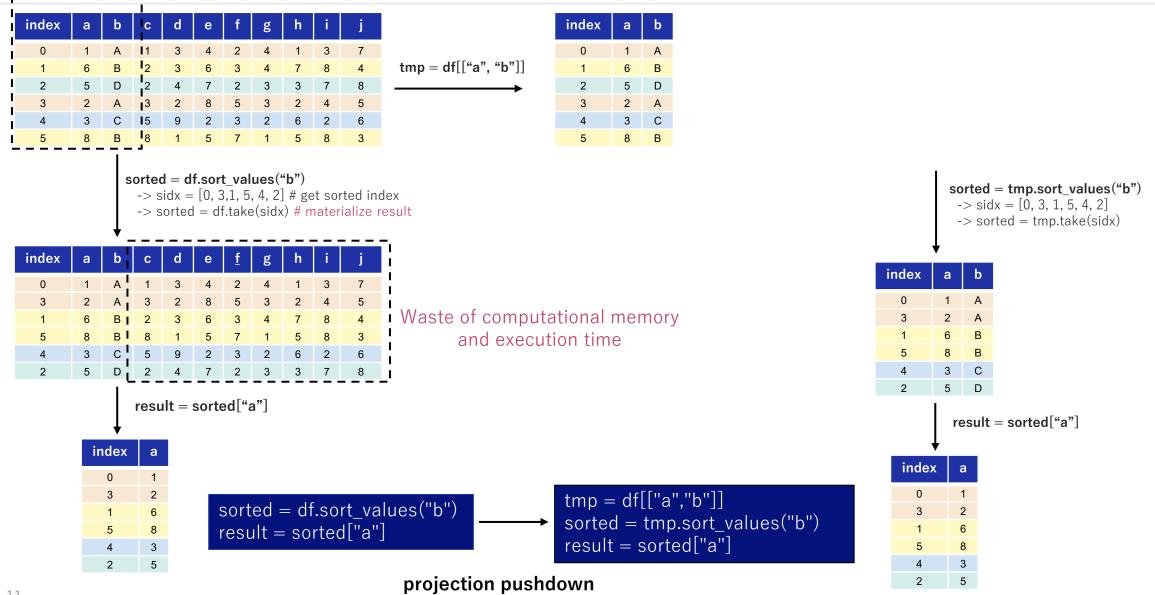
Quiz: Which one is a better code?

res = df. sort_val ues(by="B")["A"].head()

OR

tmp = df[["A", "B"]]
res = tmp.sort_values(by="B")["A"].head()

Domain Specific Optimization: Projection Pushdown



Quiz: What is the performance issue with this data flow?

ID	E_Name	Gender	C_Cod	е				
1	А	Male	1					
2	В	Male	1			de	C_Nan	пe
3	С	Female	2		1		 India	
4	E	Male	2		2		Japar	
5	F	Female	1		С	our	ntry	
6	G	Female	2				,	
7	Н	Male	1					
8	I	Female	2					
	emp	loyee						
			me	rge				
ID	E_Name	Gender	C_Code	C_N	lame			
1	A	Male	1	In	idia			
2	В	Male	1	In	dia			
3	C	Female	2	Ja	pan			
4	E	Male	2	Ja	pan			-
5	F	Female	1	In	idia	f	ilter	
6	G	Female	2	Ja	pan			
0	U U			1 India				
7	H	Male	1	In	idia			

m = employee.merge(country, on="C_Code")
f = m[m["Gender"] == "Male"]
r = f.groupby("C_Name")["E_Name"].count()
print(r)

• sample case: filter after merge operation

grou

COL

- merge is an expensive operation, as it involves data copy.
- performing merge operation on a large dataset and then filtering the output would involve unnecessary costs in data-copy.

	ID	E_Name	Gender	C_Code	C_Name
	1	А	Male	1	India
lter	2	В	Male	1	India
	4	E	Male	2	Japan
	7	Н	Male	1	India

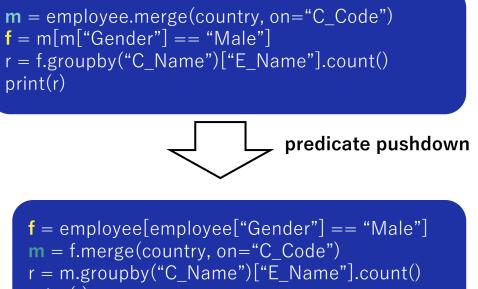
pby- unt	C_Name	E_Na
	India	3
	Japan	2

ame

Domain Specific Optimization: Predicate Pushdown

ID	E_Name	Gender	C_Code				
1	А	Male	1				
2	В	Male	1	C_Cc	ode C	_Name	
3	С	Female	2	1		India	
4	E	Male	2	2		Japan	
5	F	Female	1	C	ountr		
6	G	Female	2			,	
7	Н	Male	1				
8	I	Female	2				
	employee merge						
	ļ	filter					
ID	E_Name	Gender	C_Code		ID	Nam	
1	А	Male	1		1	А	
2	В	Male	1		2	В	
4	E	Male	2		4	E	
7	Н	Male	1		7	Н	

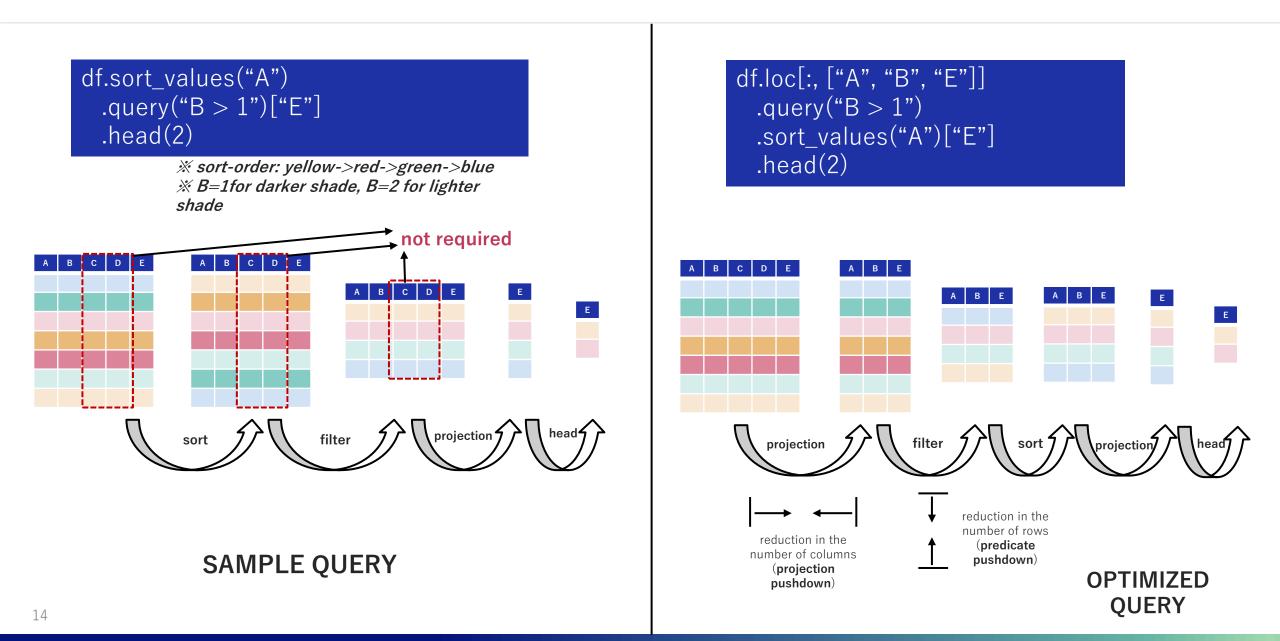
	C_Name	C_Code	Gender	Name	ID
groupby- count	India	1	Male	А	1
	India	1	Male	В	2
	Japan	2	Male	E	4
	India	1	Male	Н	7



f = employee[employee["Gender"] == "Male"]
m = f.merge(country, on="C_Code")
r = m.groupby("C_Name")["E_Name"].count()
print(r)

C_Name	E_Name
India	3
Japan	2

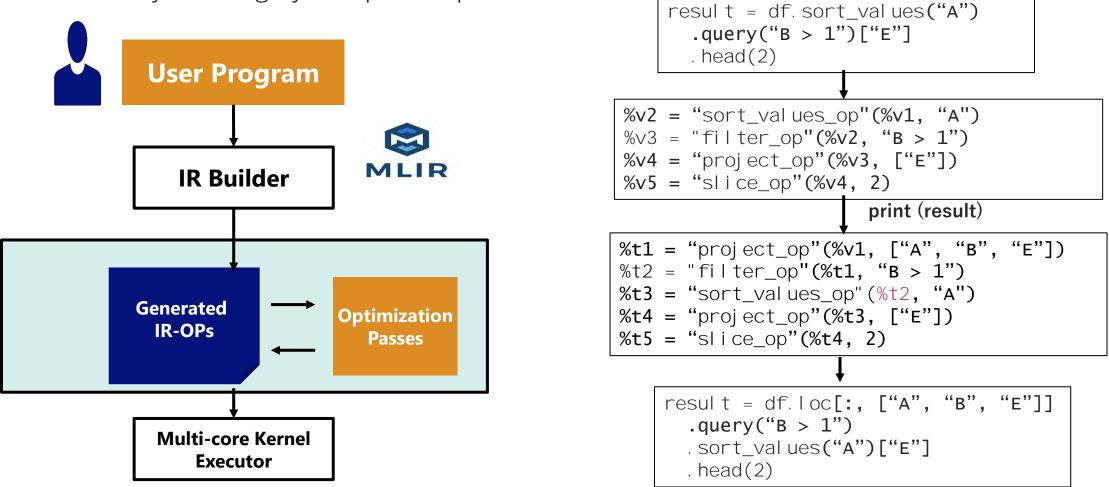
Best Practice (2): importance of execution order



Introducing FireDucks

Introducing FireDucks

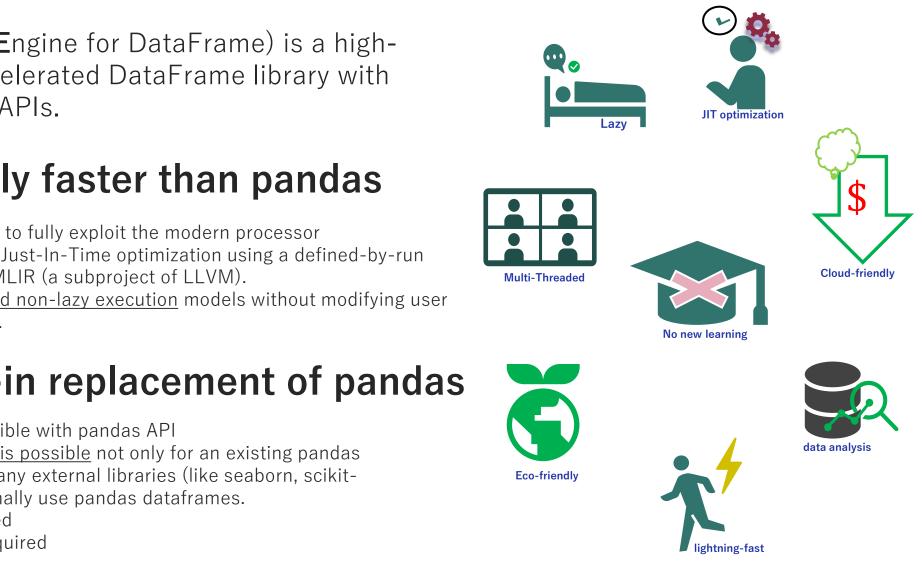
FireDucks (Flexible IR Engine for DataFrame) is a high-performance compiler-accelerated DataFrame library with highly compatible pandas APIs.



Primary Objective: Write Once, Execute Anywhere

Why FireDucks?

%IR: Intermediate Representation



FireDucks (Flexible IR Engine for DataFrame) is a highperformance compiler-accelerated DataFrame library with highly compatible pandas APIs.

Speed: significantly faster than pandas

- FireDucks is multithreaded to fully exploit the modern processor •
- Lazy execution model with Just-In-Time optimization using a defined-by-run mechanism supported by MLIR (a subproject of LLVM).

supports both lazy and non-lazy execution models without modifying user

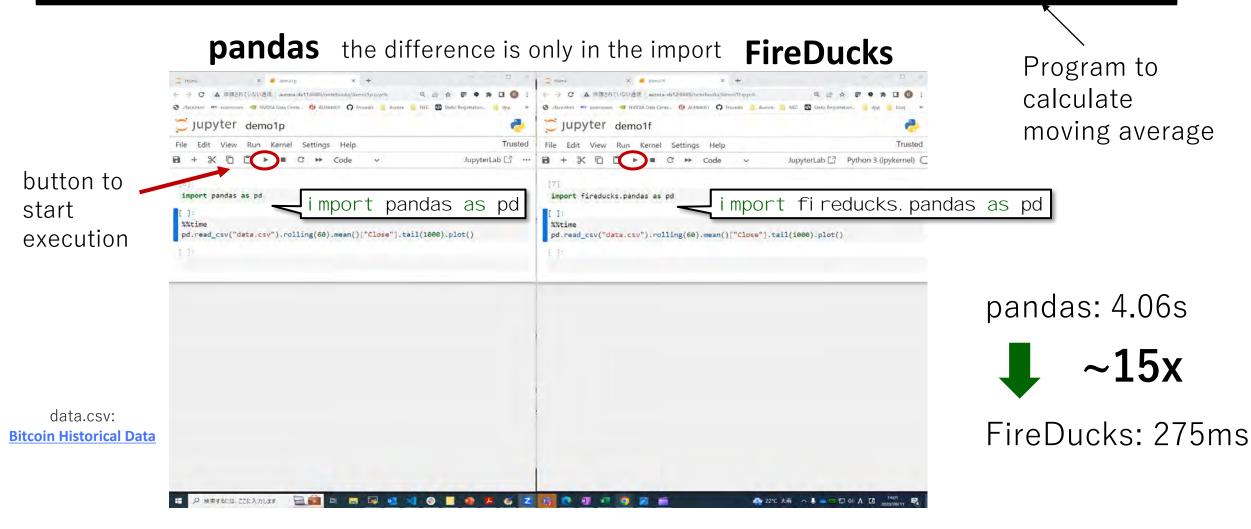
programs (same API).

Ease of use: drop-in replacement of pandas

- FireDucks is highly compatible with pandas API •
 - seamless integration is possible not only for an existing pandas program but also for any external libraries (like seaborn, scikitlearn, etc.) that internally use pandas dataframes.
- No extra learning is required •
- No code modification is required

Let's Have a Quick Demo!

pd. read_csv("data.csv").rolling(60).mean()["Close"].tail(1000).plot()



Usage of FireDucks X Linux Only, Supported for Python 3.9 to Python 3.12

1. Explicit Import

easy to import

import pandas as pd
import fireducks.pandas as pd

simply change the import statement

2. Import Hook

FireDucks provides command line option to automatically replace "pandas" with "fireducks.pandas"

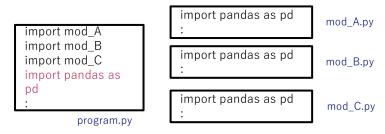
\$ python -m fireducks.pandas program.py

3. Notebook Extension

FireDucks provides simple import extension for interative notebooks.

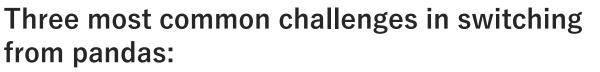
%load_ext fireducks.pandas
import pandas as pd

zero code modification

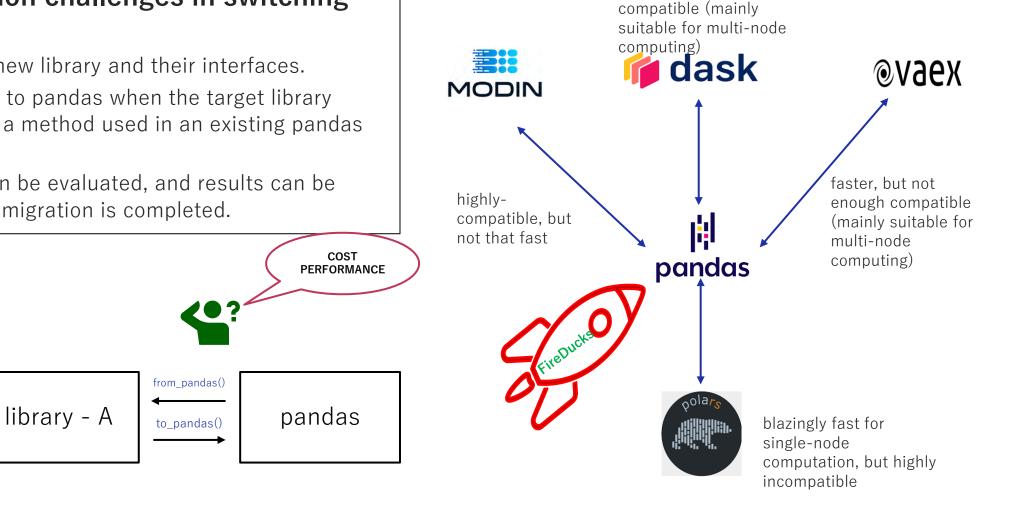


simple integration in a notebook

Seamless Integration with pandas: Challenge



- Needs to learn new library and their interfaces.
- Manual fallback to pandas when the target library doesn't support a method used in an existing pandas application.
- Performance can be evaluated, and results can be tested after the migration is completed.



faster, but not enough

Seamless Integration with pandas: Demo

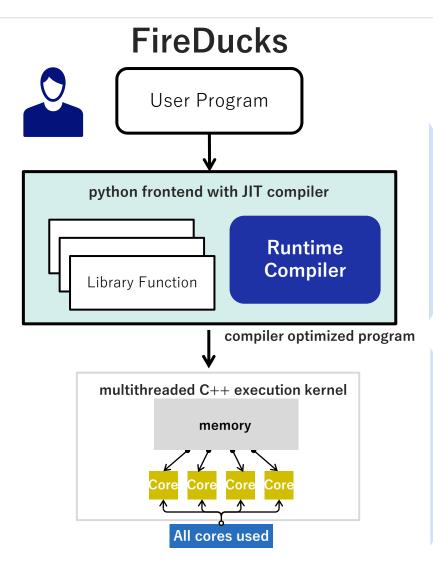
Refer: <u>https://github.com/fireducks-dev/fireducks/blob/main/notebooks/nyc_demo/fireducks_pandas_nyc_demo.ipynb</u>

```
import pandas as pd
print(f"evaluation with {pd.__name__}")
start = time.time()
# Data Loading
t1 = time.time()
df = pd.read parquet(
    "nyc parking violations 2022.parquet",
   columns=["Registration State", "Violation Description",
             "Vehicle Body Type", "Issue Date", "Summons Number"]
print(df.shape)
print(f"data-loading time: {time.time() - t1} sec")
# Q1: Which parking violation is most commonly committed by vehicles from various U.S states?
t2 = time.time()
r1 = (df[["Registration State", "Violation Description"]]
 .value counts()
 .groupby("Registration State")
 .head(1)
 .sort_index()
 .reset index()
print(r1.shape)
print(f"Query #1 processing time: {time.time() - t2} sec")
end = time.time()
print(f"total time taken: {end - start} sec")
```

\$ python nyc_demo.py evaluation with pandas: (15435607, 5) data-loading time: 2.4112608432769775 sec (65, 3) Query #1 processing time: 2.8894600868225098 sec total time taken: 5.300761699676514 sec

\$ python -mfireducks.pandas nyc_demo.py (15435607, 5) data-loading time: 0.3567678928375244 sec (65, 3) Query #1 processing time: 0.05789780616760254 sec total time taken: 0.4147005081176758 sec

Optimization Features



- **1. Compiler Specific Optimizations**: Common Subexpression Elimination, Dead-code Elimination, Constant Folding etc.
- 2. Domain Specific Optimization: Optimization at querylevel: reordering instructions etc.
- **3. Pandas Specific Optimization**: selection of suitable pandas APIs, selection of suitable parameter etc.
- **1. Multi-threaded Computation**: Leverage all the available computational cores.
- 2. Efficient Memory Management: Data Structures backed by Apache Arrow
- **3. Optimized Kernels**: Patented algorithms for Database like kernel operations: like sorting, join, filter, groupby, dropna etc. developed in C++ from scratch.

Compiler Specific Optimizations

- Common mistakes often found in Kaggle notebooks
 - same operation on the same data repeatedly
 - computation without further usage

The in-built compiler of FireDucks can auto-detect such issues and optimize at runtime.

Find year and month-wise average sales
df["year"] = pd.to_datetime(df["time"]).dt.year
df["month"] = pd.to_datetime(df["time"]).dt.month
r = df.groupby(["year", "month"])["sales"].mean()



s = pd.to_datetime(df["time"])
df["year"] = s.dt.year
df["month"] = s.dt.month
r = df.groupby(["year", "month"])["sales"].mean()

def func(x: pd.DataFrame, y: pd.DataFrame):
 merged = x.merge(y, on="key")
 sorted = merged.sort_values(by="key")
 return merged.groupby("key").max()

Dead Code Elimination

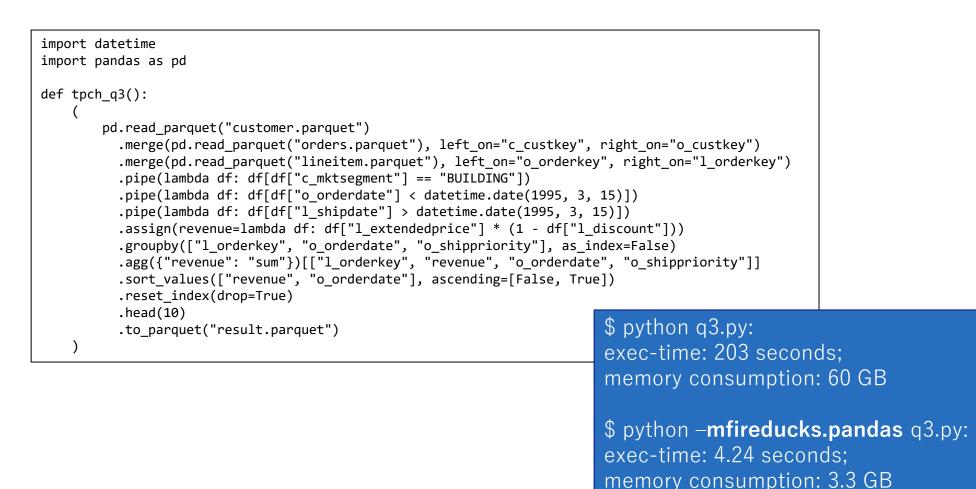
def func(x: pd.DataFrame, y: pd.DataFrame):
 merged = x.merge(y, on="key")
 return merged.groupby("key").max()

Domain Specific Optimizations: Projection Pushdown, Predicate Pushdown (1/2)

Scale Factor: 10 Number of logical cores: 96

X Shipping Priority Query (Q3) from TPC-H benchmark:

This query retrieves the 10 unshipped orders with the highest value.

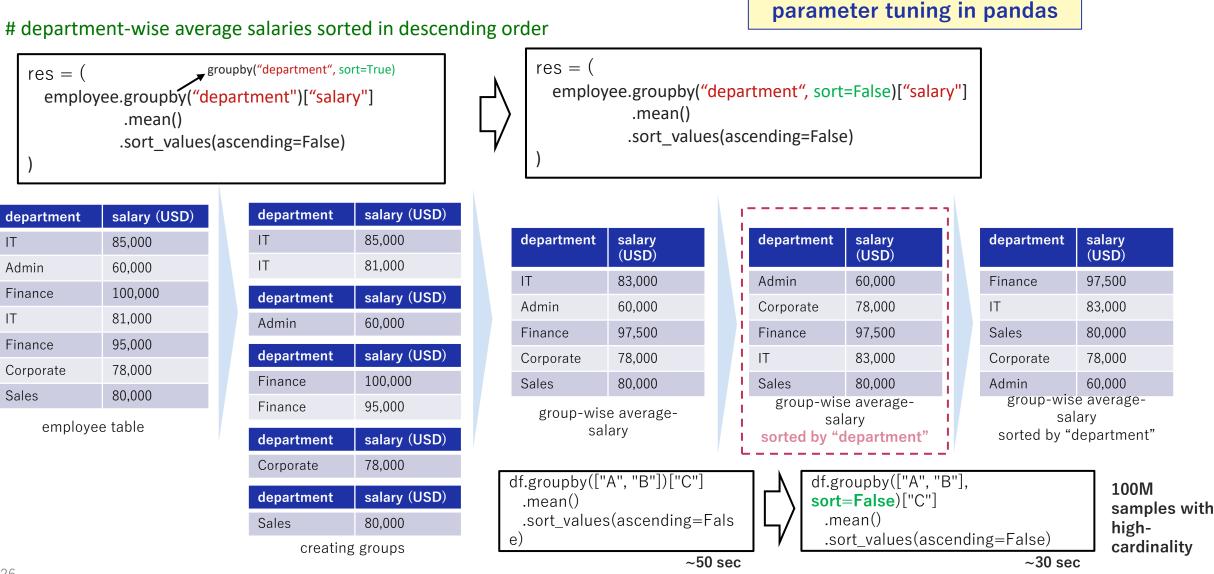


Domain Specific Optimizations: Projection Pushdown, Predicate Pushdown (2/2)

Refer: <u>https://github.com/fireducks-dev/fireducks/blob/main/notebooks/tpch-query3-pandas-fireducks-cudf.ipynb</u>

```
import datetime
                                                manual optimization
import pandas as pd
def tpch optimized q3():
   # load only required columns from respective tables
   req_customer_cols = ["c_custkey", "c_mktsegment"] # (2/8)
   req_lineitem_cols = ["l_orderkey", "l_shipdate", "l_extendedprice", "l_discount"] #(4/16)
   req orders cols = ["o custkey", "o orderkey", "o orderdate", "o shippriority"] #(4/9)
   customer = pd.read parquet("customer.parquet", columns = req customer cols)
   lineitem = pd.read_parquet("lineitem.parquet", columns = req lineitem cols)
   orders = pd.read parquet("orders.parquet", columns = req orders cols)
                                                                                        $ python opt_q3.py:
   # advanced-filter: to reduce scope of "customer" table to be processed
                                                                                        exec-time: 13 seconds;
   f cust = customer[customer["c mktsegment"] == "BUILDING"]
                                                                                        memory consumption: 5.5 GB
   # advanced-filter: to reduce scope of "orders" table to be processed
   f ord = orders[orders["o orderdate"] < datetime.date(1995, 3, 15)]</pre>
                                                                                        $ python –mfireducks.pandas opt q3.py:
   # advanced-filter: to reduce scope of "lineitem" table to be processed
                                                                                        exec-time: 4.8 seconds;
   f litem = lineitem[lineitem["l shipdate"] > datetime.date(1995, 3, 15)]
                                                                                        memory consumption: 3.4 GB
       f_cust.merge(f_ord, left_on="c_custkey", right_on="o_custkey")
             .merge(f litem, left on="o orderkey", right on="l orderkey")
             .assign(revenue=lambda df: df["l extendedprice"] * (1 - df["l discount"]))
             .groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)
             .agg({"revenue": "sum"})[["1_orderkey", "revenue", "o_orderdate", "o_shippriority"]]
             .sort values(["revenue", "o orderdate"], ascending=[False, True])
             .reset_index(drop=True)
             .head(10)
             .to parquet("result.parquet")
```

Pandas Specific Optimization – Parameter Tuning

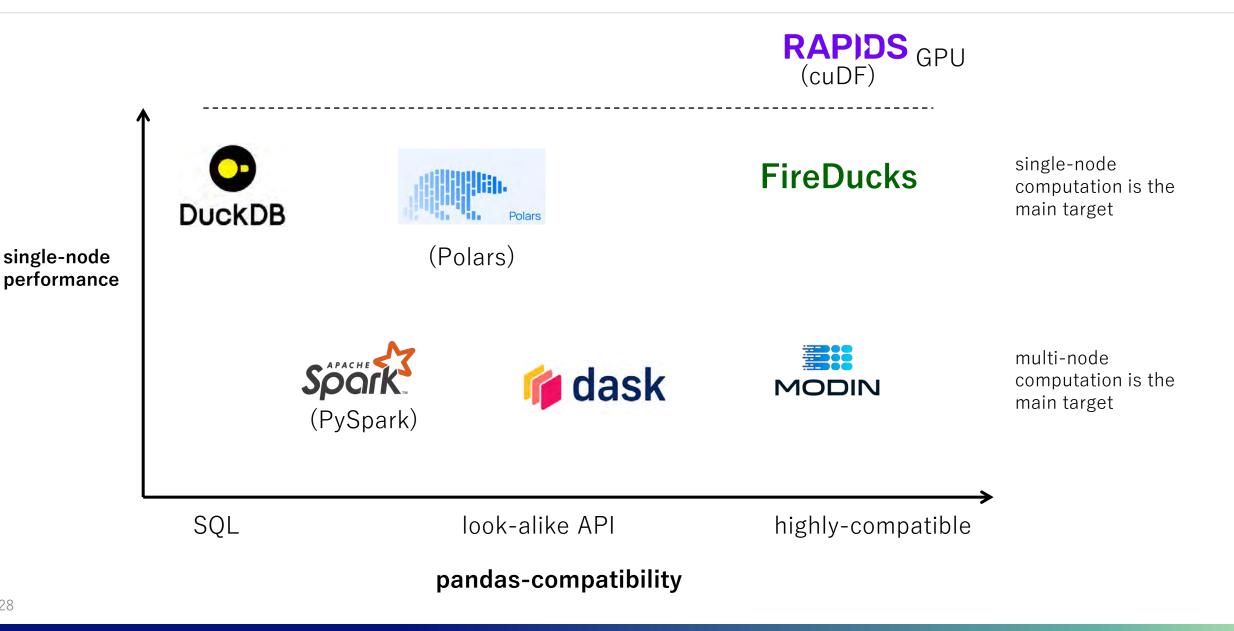


Benchmark (1): DB-Benchmark

Database-like ops benchmark (https://duckdblabs.github.io/db-benchmark)

groupt	by join				groupby	join			
0.5 GE	5 GB 50 GB				0.5 GB	5 GB 50 GB			
basic q	uestions				basic qu	estions			
	Input table: 1,0	00,000,0	00 rows x 9 co	olumns (50 GB)	In	put table: 10	0,000,000	rows x 7 colu	mns (5 GB)
	FireDucks	1.0.4	2024-09-10	15s		FireDucks	1.0.4	2024-09-10	7s
	DuckDB	1.0.0	2024-07-04	25s		DuckDB	1.0.0	2024-07-04	9s
rank-1	ClickHouse	24.5.1.176	532024-06-07	28s	rank-1	Polars	1.1.0	2024-07-08	9s
	Polars	1.1.0	2024-07-09	47s		Datafusion	38.0.1	2024-06-07	15s
	Datafusion	38.0.1	2024-06-07	56s		InMemoryDa	tagets18	2023-10-20	25s
	data.table	1.15.99	2024-06-07	88s		ClickHouse	24.5.1.17	632024-06-07	43s
	DataFrames.jl	1.6.1	2024-06-07	91s		data.table	1.15.99	2024-06-07	62s
	InMemoryData		2023-10-17	218s		collapse	2.0.14	2024-06-07	69s
	spark	3.5.1	2024-06-07	261s		DataFrames.	jl 1.6.1	2024-06-07	77s
	R-arrow	16.1.0	2024-06-07	378s		spark	3.5.1	2024-06-07	128s
	collapse	2.0.14	2024-06-07	411s		dplyr	1.1.4	2024-06-07	214s
	(py)datatable		2024-06-07	1022s		pandas	2.2.2	2024-06-07	244s
	dplyr	1.1.4	2024-06-07	1104s		dask	2024.5.2	2024-06-07	635s
	pandas	2.2.2	2024-06-07	1126s		(py)datatable	e 1.2.0a0	2024-06-07 und	defined exception
	dask	2024.5.2		out of memory		R-arrow	16.1.0	2024-06-07	out of memory
	Modin		see README	pending		Modin		see README	pending

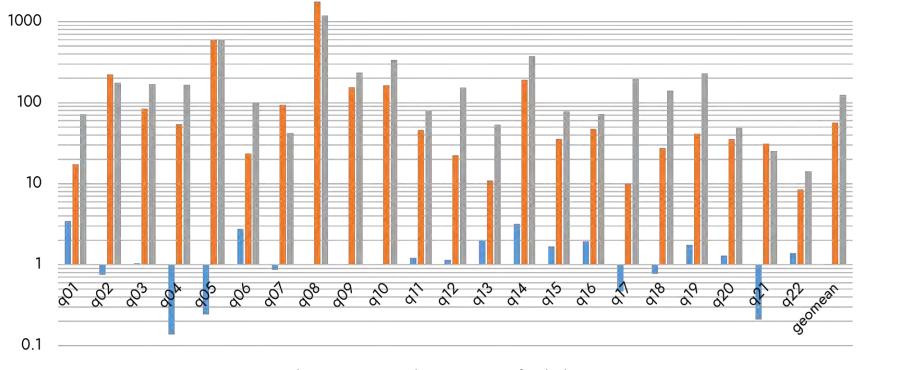
General Overview: DataFrame Libraries



Benchmark (2): Speedup from pandas in TPC-H benchmark

FireDucks is >1000x faster than pandas at max

Speedup from pandas 2.2.3 (scale factor = 10)



modin 0.32.0 polars 1.16.0 fireducks 1.1.2

AWS EC2 m7i.8xlarge: Intel(R) Xeon(R) Platinum 8488C (32cores), 128 GB

Comparison of DataFrame libraries (average speedup)

FireDucks 125x

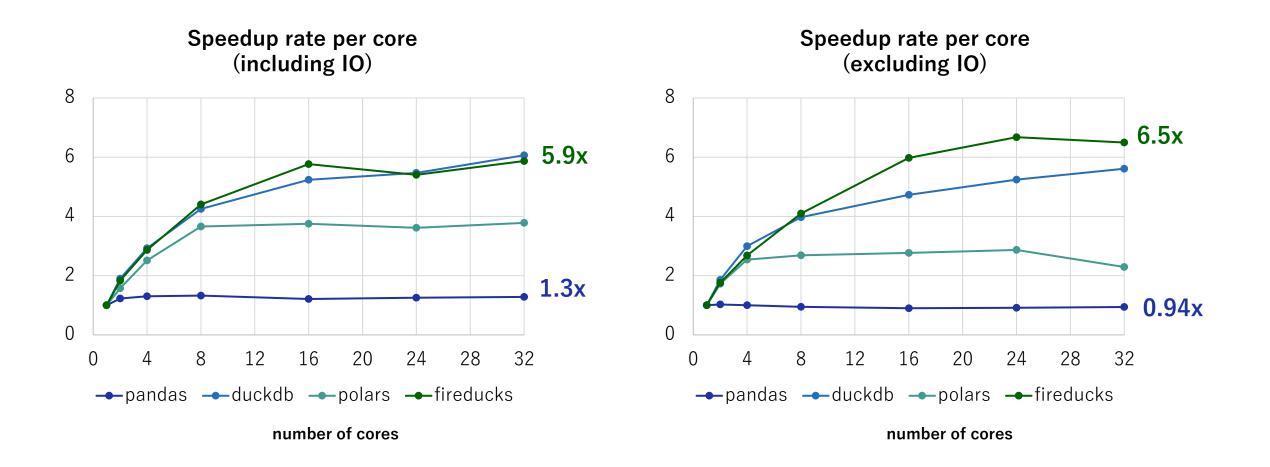
Polars	57x
Modin	1x

slower

faster than pandas

Scalability: DuckDB vs Polars vs FireDucks

Libraries that support multi-threading will benefit from a good machine



Resource on FireDucks

Web site (User guide, benchmark, blog)

https://fireducks-dev.github.io/

X(twitter) (Release information) https://x.com/fireducksdev

FireDucks

Compiler Accelerated DataFrame Library for Python with fully-compatible pandas API

Get Started

import fireducks.pandas as pd

News Release fileducks-0.12.4 (Jul 09, 2024) Have you ever thought of speeding up your data analysis in pandas with a compiler?(blog) (Jul 03, 2024) Evaluation result of Database-like ops benchmark with FireDucks is now available. (Jun 18, 2024)

Github (Issue report) https://github.com/fireducks-dev/fireducks

Accelerate pandas without any manual code changes

Do you have a pandas-based program that is slow? FireDucks can speed-up your programs without any manual code changes. You can accelerate your data analysis without worrying about slow performance due to single-threaded execution in pandas.

https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWIXO62Lu605pnBJ2w

Thank You!

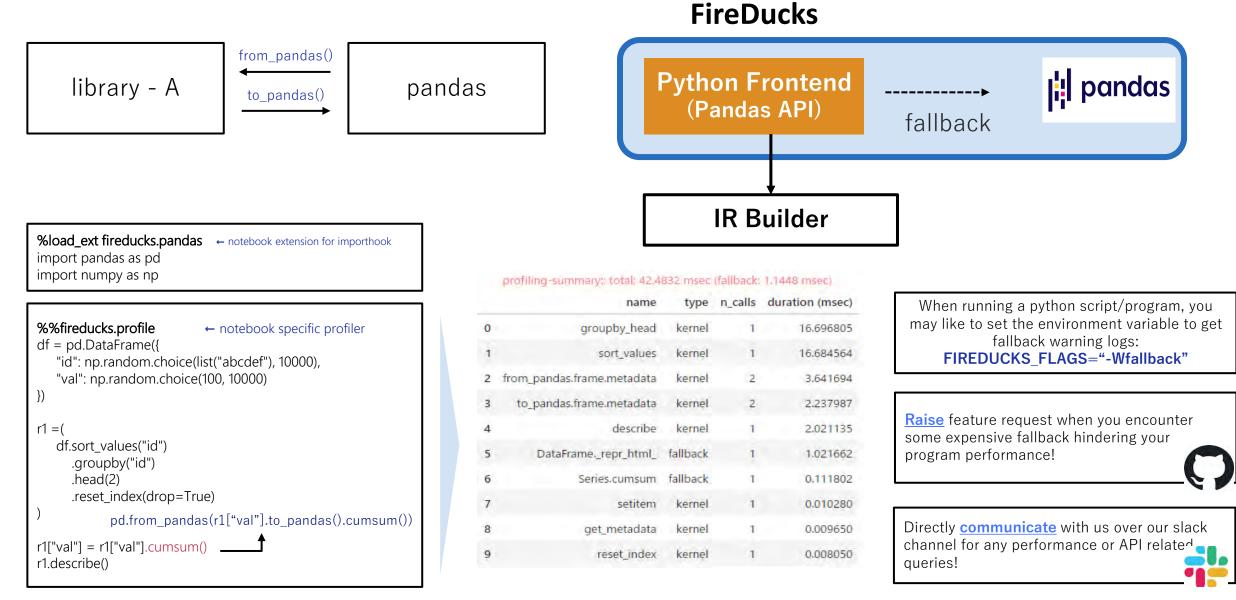
◆Focus more on in-depth data
exploration using "pandas".

◆Let the "FireDucks" take care
of the optimization for you.

◆Enj oy Green Computing!

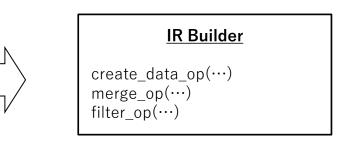
Frequently Asked Questions

FAQ: Why FireDucks is highly compatible with pandas?



FAQ: How to evaluate Lazy Execution?

```
def foo(employee, country):
    stime = time.time()
    m = employee.merge(country, on="C_Code")
    r = m[m["Gender"] == "Male"]
    print(f"fireducks time: {time.time() - stime} sec")
    return r
```



fireducks time: 0.0000123 sec

```
def foo(employee, country):
    employee._evaluate()
    country._evaluate()
    stime = time.time()
    m = employee.merge(country, on="C_Code")
    r = m[m["Gender"] == "Male"]
    r._evaluate()
    print(f"fireducks time: {time.time() - stime} sec")
    return r
```

fireducks time: 0.02372143 sec

FIREDUCKS_FLAGS="--benchmark-mode"

Use this to disable lazy-execution mode when you do not want to make any changes in your existing application during performance evaluation.

FAQ: How to configure number of cores to be used?

OMP_NUM_THREADS=1

Use this to stop parallel execution, or configure this with the intended number of cores to be used

Alternatively, you can use the Linux taskset command to bind your program with specific CPU cores.

Orchestrating a brighter world

NECは、安全・安心・公平・効率という社会価値を創造し、 誰もが人間性を十分に発揮できる持続可能な社会の実現を目指します。

Orchestrating a brighter world

