
© NEC Corporation 2023

Introducing FireDucks:
A Multithreaded DataFrame Library with JIT compiler

February 06, 2025

Sourav Saha (NEC)

© NEC Corporation 20232

◆About Pandas

◆Tips and Tricks for Optimizing Large-scale Data processing workload

◆FireDucks and Its Offerings

◆FireDucks Optimization Strategy

◆Evaluation Benchmarks

◆Resources on FireDucks

◆Test Drive

◆FAQs

Agenda

© NEC Corporation 20233

Quick Introduction!

SOURAV SAHA – Research Engineer @ NEC Corporation

Hello, I am a software professional with 11+ years of working experience across diverse areas of HPC, Vector
Supercomputing, Distributed Programming, Big Data and Machine Learning. Currently, my team at NEC R&D Lab,
Japan, is researching various data processing-related algorithms. Blending the mixture of different niche technologies
related to compiler framework, high-performance computing, and multi-threaded programming, we have developed a
Python library named FireDucks with highly compatible pandas APIs for DataFrame-related operations.

https://www.nec.com/en/global/solutions/hpc/sx/index.html

Data
Scientists
often face
issues with
slow
performance
of pandas

we wanted to
develop some library

using compiler
technology

we wanted to
speed-up python

User Program

compiler
technologies

FireDucks

groupby join

dropna filter

sort corr

pandas APIMr. Kazuhisa Ishizaka
(Primary Author)

https://www.linkedin.com/in/sourav-%E3%82%BD%E3%82%A6%E3%83%A9%E3%83%96-saha-%E3%82%B5%E3%83%8F-a5750259/

https://twitter.com/SouravSaha97589

https://twitter.com/SouravSaha97589

© NEC Corporation 20234

Workflow of a Data Scientist

collection
of raw
data

deploy

almost 75% efforts of a Data

Scientist spent on data

preparation

Anaconda:
The State of Data Science 2020

Analysis

data
lake

data
preparation

AI/ML
training model

© NEC Corporation 20235

About Pandas (1/2)

◼ It (mostly) doesn’t support parallel computation.

◼ It doesn’t have any auto-optimization feature.

◼ Hence, it is not suitable for processing large datasets.

◼ Very slow execution reduces the efficiency of a data

analyst.

◼ Long-running execution
◼ produces higher cloud costs

◼ attributes to higher CO2 emission

0 50 100 150

numpy

pandas

scipy

scikit-learn

matplotlib

pyspark

networkx

tensorflow

nltk

seaborn

pytorch

Monthly download from pypi.org
(Data Analytics Libraries)

◆ Most popular Python library for data analytics.

© NEC Corporation 20236

About Pandas (2/2)

0 50 100 150

numpy

pandas

scipy

scikit-learn

matplotlib

pyspark

networkx

tensorflow

nltk

seaborn

pytorch

Monthly download from pypi.org
(Data Analytics Libraries)

◆ Most popular Python library for data analytics.

The way of implementing a query in pandas-like library (that
does not support query optimization) heavily impacts its
performance!!

• We will discuss a couple of approaches to improve the
performance related to computational time and memory of
a query written in pandas, when processing large-scale
data.

• We will also discuss how those approaches can be
automated using compiler technologies.

Performance Challenges & Best Practices to
follow

© NEC Corporation 20238

Quiz: Which one is a better code?

def foo(filename):
df = pd.read_csv(filename)
t1 = df.drop_duplicates()
t2 = t1.sort_values(“B”)
t3 = t2.head(2)
return t3

def foo(filename):
return (

pd.read_csv(filename)
.drop_duplicates()
.sort_values(“B”)
.head(2)

)

OR

© NEC Corporation 20239

Best Practice (1): importance of chained expression

A B C

u 0.91 1

a 1.00 4

a 1.00 4

o 0.24 0

o 0.24 0

e 0.43 1

u 0.91 1

e 0.20 2

o 0.24 0

a 1.00 4

A B C

u 0.91 1

a 1.00 4

o 0.24 0

e 0.43 1

e 0.20 2

A B C

a 1.00 4

u 0.91 1

e 0.43 1

o 0.24 0

e 0.20 2

A B C

a 1.00 4

u 0.91 1

def foo(filename):
df = pd.read_csv(filename)
t1 = df.drop_duplicates()
t2 = t1.sort_values(“B”)
t3 = t2.head(2)
return t3

drop_duplicates sort head(2)

df: ~16 GB

t1: ~8 GB t3: ~8 GB

t4: ~x KB

def foo(filename):
return (
pd.read_csv(filename)
.drop_duplicates()
.sort_values(“B”)
.head(2)

)

re-write using chained
expression

A B C

u 0.91 1

a 1.00 4

a 1.00 4

o 0.24 0

o 0.24 0

e 0.43 1

u 0.91 1

e 0.20 2

o 0.24 0

a 1.00 4

A B C

u 0.91 1

a 1.00 4

o 0.24 0

e 0.43 1

e 0.20 2

A B C

a 1.00 4

u 0.91 1

e 0.43 1

o 0.24 0

e 0.20 2

A B C

a 1.00 4

u 0.91 1

drop_duplicates sort head(2)

© NEC Corporation 202310

Quiz: Which one is a better code?

res = df.sort_values(by=“B”)[“A”].head()

tmp = df[[“A”, “B”]]
res = tmp.sort_values(by=“B”)[“A”].head()

OR

© NEC Corporation 202311

Domain Specific Optimization: Projection Pushdown

index a b c d e f g h i j

0 1 A 1 3 4 2 4 1 3 7
1 6 B 2 3 6 3 4 7 8 4
2 5 D 2 4 7 2 3 3 7 8
3 2 A 3 2 8 5 3 2 4 5
4 3 C 5 9 2 3 2 6 2 6
5 8 B 8 1 5 7 1 5 8 3

sorted = df.sort_values(“b”)
-> sidx = [0, 3,1, 5, 4, 2] # get sorted index
-> sorted = df.take(sidx) # materialize result

index a b c d e f g h i j

0 1 A 1 3 4 2 4 1 3 7
3 2 A 3 2 8 5 3 2 4 5
1 6 B 2 3 6 3 4 7 8 4
5 8 B 8 1 5 7 1 5 8 3
4 3 C 5 9 2 3 2 6 2 6
2 5 D 2 4 7 2 3 3 7 8

index a

0 1
3 2
1 6
5 8
4 3
2 5

result = sorted[“a”]
result = sorted[“a”]

index a b

0 1 A
1 6 B
2 5 D
3 2 A
4 3 C
5 8 B

index a b

0 1 A
3 2 A
1 6 B
5 8 B
4 3 C
2 5 D

index a

0 1
3 2
1 6
5 8
4 3
2 5

tmp = df[[“a”, “b”]]

sorted = tmp.sort_values(“b”)
-> sidx = [0, 3, 1, 5, 4, 2]
-> sorted = tmp.take(sidx)

sorted = df.sort_values("b")
result = sorted["a"]

tmp = df[["a","b"]]
sorted = tmp.sort_values("b")
result = sorted["a"]

projection pushdown

Waste of computational memory
and execution time

© NEC Corporation 202312

Quiz: What is the performance issue with this data flow?

ID E_Name Gender C_Code

1 A Male 1

2 B Male 1

3 C Female 2

4 E Male 2

5 F Female 1

6 G Female 2

7 H Male 1

8 I Female 2

C_Code C_Name

1 India

2 Japan

ID E_Name Gender C_Code C_Name

1 A Male 1 India

2 B Male 1 India

3 C Female 2 Japan

4 E Male 2 Japan

5 F Female 1 India

6 G Female 2 Japan

7 H Male 1 India

8 I Female 2 Japan

ID E_Name Gender C_Code C_Name

1 A Male 1 India

2 B Male 1 India

4 E Male 2 Japan

7 H Male 1 India

filter

m = employee.merge(country, on=“C_Code”)
f = m[m[“Gender”] == “Male”]
r = f.groupby(“C_Name”)[“E_Name”].count()
print(r)

employee

country

merge

C_Name E_Name

India 3

Japan 2

groupby-
count

• sample case: filter after merge operation
• merge is an expensive operation, as it involves

data copy.
• performing merge operation on a large dataset

and then filtering the output would involve
unnecessary costs in data-copy.

ID E_Name Gender C_Code C_Name

1 A Male 1 India

2 B Male 1 India

3 C Female 2 Japan

4 E Male 2 Japan

5 F Female 1 India

6 G Female 2 Japan

7 H Male 1 India

8 I Female 2 Japan

© NEC Corporation 202313

Domain Specific Optimization: Predicate Pushdown

ID Name Gender C_Code C_Name

1 A Male 1 India

2 B Male 1 India

4 E Male 2 Japan

7 H Male 1 India

m = employee.merge(country, on=“C_Code”)
f = m[m[“Gender”] == “Male”]
r = f.groupby(“C_Name”)[“E_Name”].count()
print(r)

f = employee[employee[“Gender”] == “Male”]
m = f.merge(country, on=“C_Code”)
r = m.groupby(“C_Name”)[“E_Name”].count()
print(r)

ID E_Name Gender C_Code

1 A Male 1

2 B Male 1

4 E Male 2

7 H Male 1

ID E_Name Gender C_Code

1 A Male 1

2 B Male 1

3 C Female 2

4 E Male 2

5 F Female 1

6 G Female 2

7 H Male 1

8 I Female 2

C_Code C_Name

1 India

2 Japan

employee

country

C_Name E_Name

India 3

Japan 2

groupby-
count

filter

merge

predicate pushdown

© NEC Corporation 202314

Best Practice (2): importance of execution order

A B C D E

df.sort_values(“A”)
.query(“B > 1”)[“E”]
.head(2)

A B C D E

df.loc[:, [“A”, “B”, “E”]]
.query(“B > 1”)
.sort_values(“A”)[“E”]
.head(2)

A B C D E E

E

A B C D E A B E

A B E E

E

sort filter projection head
projection sort projection head

reduction in the
number of columns

(projection
pushdown)

filter

reduction in the
number of rows

(predicate
pushdown)SAMPLE QUERY

OPTIMIZED
QUERY

A B E

※ sort-order: yellow->red->green->blue
※ B=1for darker shade, B=2 for lighter
shade

not required

Introducing FireDucks

© NEC Corporation 202316

Introducing FireDucks

Generated

IR-OPs

User Program

Optimization

Passes

IR Builder

Multi-core Kernel

Executor

result = df.sort_values(“A”)
.query(“B > 1”)[“E”]
.head(2)

%v2 = “sort_values_op"(%v1, “A")
%v3 = "filter_op"(%v2, “B > 1”)
%v4 = “project_op”(%v3, [“E”])
%v5 = “slice_op”(%v4, 2)

%t1 = “project_op”(%v1, [“A”, “B”, “E”])
%t2 = "filter_op"(%t1, “B > 1”)
%t3 = “sort_values_op"(%t2, “A")
%t4 = “project_op”(%t3, [“E”])
%t5 = “slice_op”(%t4, 2)

result = df.loc[:, [“A”, “B”, “E”]]
.query(“B > 1”)
.sort_values(“A”)[“E”]
.head(2)

print (result)

※IR: Intermediate Representation

Primary Objective: Write Once, Execute Anywhere

(Flexible IR Engine for DataFrame) is a high-performance compiler-accelerated
DataFrame library with highly compatible pandas APIs.

© NEC Corporation 202317

Why FireDucks?

(Flexible IR Engine for DataFrame) is a high-
performance compiler-accelerated DataFrame library with
highly compatible pandas APIs.

Speed: significantly faster than pandas

Ease of use: drop-in replacement of pandas

• FireDucks is multithreaded to fully exploit the modern processor
• Lazy execution model with Just-In-Time optimization using a defined-by-run

mechanism supported by MLIR (a subproject of LLVM).
• supports both lazy and non-lazy execution models without modifying user

programs (same API).

• FireDucks is highly compatible with pandas API
• seamless integration is possible not only for an existing pandas

program but also for any external libraries (like seaborn, scikit-
learn, etc.) that internally use pandas dataframes.

• No extra learning is required
• No code modification is required

Lazy
JIT optimization

Multi-Threaded

Eco-friendly

lightning-fast

data analysis

No new learning

Cloud-friendly

※IR: Intermediate Representation

© NEC Corporation 202318

Let’s Have a Quick Demo!

pandas FireDucks

button to
start
execution

pd.read_csv(“data.csv”).rolling(60).mean()[“Close”].tail(1000).plot()

Program to
calculate
moving average

pandas: 4.06s

FireDucks: 275ms

~15x

the difference is only in the import

import pandas as pd import fireducks.pandas as pd

data.csv:
Bitcoin Historical Data

https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data?select=bitstampUSD_1-min_data_2012-01-01_to_2021-03-31.csv

© NEC Corporation 202319

Usage of FireDucks

2. Import Hook

$ python –m fireducks.pandas program.py

FireDucks provides command line option to automatically replace “pandas” with “fireducks.pandas”

zero code modification

1. Explicit Import

import pandas as pd
import fireducks.pandas as pd

easy to import

simply change the import statement

3. Notebook Extension

%load_ext fireducks.pandas
import pandas as pd

FireDucks provides simple import extension for interative notebooks.

simple integration in a notebook

import mod_A
import mod_B
import mod_C
import pandas as
pd
:

import pandas as pd
:

import pandas as pd
:

import pandas as pd
:

mod_A.py

mod_B.py

mod_C.py

program.py

※ Linux Only, Supported for Python 3.9 to Python 3.12

© NEC Corporation 202320

Seamless Integration with pandas: Challenge

Three most common challenges in switching

from pandas:

◼ Needs to learn new library and their interfaces.

◼ Manual fallback to pandas when the target library

doesn’t support a method used in an existing pandas

application.

◼ Performance can be evaluated, and results can be

tested after the migration is completed.

library - A pandas

from_pandas()

to_pandas()

COST
PERFORMANCE

highly-
compatible, but
not that fast

faster, but not enough
compatible (mainly
suitable for multi-node
computing)

blazingly fast for
single-node
computation, but highly
incompatible

faster, but not
enough compatible
(mainly suitable for
multi-node
computing)

© NEC Corporation 202321

Seamless Integration with pandas: Demo

import pandas as pd
print(f"evaluation with {pd.__name__}")

start = time.time()
Data Loading
t1 = time.time()
df = pd.read_parquet(

"nyc_parking_violations_2022.parquet",
columns=["Registration State", "Violation Description",

"Vehicle Body Type", "Issue Date", "Summons Number"]
)
print(df.shape)
print(f"data-loading time: {time.time() - t1} sec")

Q1: Which parking violation is most commonly committed by vehicles from various U.S states?
t2 = time.time()
r1 = (df[["Registration State", "Violation Description"]]
.value_counts()
.groupby("Registration State")
.head(1)
.sort_index()
.reset_index()
)
print(r1.shape)
print(f"Query #1 processing time: {time.time() - t2} sec")

end = time.time()
print(f"total time taken: {end - start} sec")

$ python nyc_demo.py
evaluation with pandas:
(15435607, 5)
data-loading time: 2.4112608432769775 sec
(65, 3)
Query #1 processing time: 2.8894600868225098 sec
total time taken: 5.300761699676514 sec

$ python -mfireducks.pandas nyc_demo.py
(15435607, 5)
data-loading time: 0.3567678928375244 sec
(65, 3)
Query #1 processing time: 0.05789780616760254 sec
total time taken: 0.4147005081176758 sec

~8x

Refer: https://github.com/fireducks-dev/fireducks/blob/main/notebooks/nyc_demo/fireducks_pandas_nyc_demo.ipynb

https://github.com/fireducks-dev/fireducks/blob/main/notebooks/nyc_demo/fireducks_pandas_nyc_demo.ipynb

© NEC Corporation 202322

Optimization Features

User Program

Runtime
Compiler

FireDucks

Library Function

Core CoreCore Core

All cores used

memory

multithreaded C++ execution kernel

compiler optimized program

python frontend with JIT compiler

1. Compiler Specific Optimizations: Common Sub-
expression Elimination, Dead-code Elimination, Constant
Folding etc.

2. Domain Specific Optimization: Optimization at query-
level: reordering instructions etc.

3. Pandas Specific Optimization: selection of suitable
pandas APIs, selection of suitable parameter etc.

1. Multi-threaded Computation: Leverage all the available
computational cores.

2. Efficient Memory Management: Data Structures backed
by Apache Arrow

3. Optimized Kernels: Patented algorithms for Database like
kernel operations: like sorting, join, filter, groupby, dropna
etc. developed in C++ from scratch.

© NEC Corporation 202323

Compiler Specific Optimizations

Find year and month-wise average sales
df[“year”] = pd.to_datetime(df[“time”]).dt.year
df[“month”] = pd.to_datetime(df[“time”]).dt.month
r = df.groupby([“year”, “month”])[“sales”].mean()

s = pd.to_datetime(df[“time”])
df[“year”] = s.dt.year
df[“month”] = s.dt.month
r = df.groupby([“year”, “month”])[“sales”].mean()

def func(x: pd.DataFrame, y: pd.DataFrame):
merged = x.merge(y, on="key")
sorted = merged.sort_values(by="key")
return merged.groupby("key").max()

def func(x: pd.DataFrame, y: pd.DataFrame):
merged = x.merge(y, on="key")
return merged.groupby("key").max()

Common Sub-expression Elimination Dead Code Elimination

Have you ever thought of speeding up your data analysis in pandas with a compiler?

• Common mistakes often found in Kaggle notebooks
• same operation on the same data repeatedly
• computation without further usage

The in-built compiler of FireDucks can
auto-detect such issues and optimize

at runtime.

https://medium.com/@qsourav/have-you-ever-thought-of-speeding-up-your-data-analysis-in-pandas-with-a-compiler-198d2b6da0b8

© NEC Corporation 202324

Domain Specific Optimizations: Projection Pushdown, Predicate Pushdown (1/2)

import datetime
import pandas as pd

def tpch_q3():
 (
 pd.read_parquet("customer.parquet")
 .merge(pd.read_parquet("orders.parquet"), left_on="c_custkey", right_on="o_custkey")
 .merge(pd.read_parquet("lineitem.parquet"), left_on="o_orderkey", right_on="l_orderkey")
 .pipe(lambda df: df[df["c_mktsegment"] == "BUILDING"])
 .pipe(lambda df: df[df["o_orderdate"] < datetime.date(1995, 3, 15)])
 .pipe(lambda df: df[df["l_shipdate"] > datetime.date(1995, 3, 15)])
 .assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))
 .groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)
 .agg({"revenue": "sum"})[["l_orderkey", "revenue", "o_orderdate", "o_shippriority"]]
 .sort_values(["revenue", "o_orderdate"], ascending=[False, True])
 .reset_index(drop=True)
 .head(10)
 .to_parquet("result.parquet")
)

$ python q3.py:
exec-time: 203 seconds;
memory consumption: 60 GB

$ python –mfireducks.pandas q3.py:
exec-time: 4.24 seconds;
memory consumption: 3.3 GB

Scale Factor: 10
Number of logical cores: 96 ※ Shipping Priority Query (Q3) from TPC-H benchmark:

This query retrieves the 10 unshipped orders with the highest value.

https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf#page=33

© NEC Corporation 202325

Domain Specific Optimizations: Projection Pushdown, Predicate Pushdown (2/2)

import datetime
import pandas as pd

def tpch_optimized_q3():
load only required columns from respective tables
req_customer_cols = ["c_custkey", "c_mktsegment"] # (2/8)
req_lineitem_cols = ["l_orderkey", "l_shipdate", "l_extendedprice", "l_discount"] #(4/16)
req_orders_cols = ["o_custkey", "o_orderkey", "o_orderdate", "o_shippriority"] #(4/9)
customer = pd.read_parquet("customer.parquet", columns = req_customer_cols)
lineitem = pd.read_parquet("lineitem.parquet", columns = req_lineitem_cols)
orders = pd.read_parquet("orders.parquet", columns = req_orders_cols)

advanced-filter: to reduce scope of “customer” table to be processed
f_cust = customer[customer["c_mktsegment"] == "BUILDING"]

advanced-filter: to reduce scope of “orders” table to be processed
f_ord = orders[orders["o_orderdate"] < datetime.date(1995, 3, 15)]

advanced-filter: to reduce scope of “lineitem” table to be processed
f_litem = lineitem[lineitem["l_shipdate"] > datetime.date(1995, 3, 15)]

(
f_cust.merge(f_ord, left_on="c_custkey", right_on="o_custkey")

.merge(f_litem, left_on="o_orderkey", right_on="l_orderkey")

.assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))

.groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)

.agg({"revenue": "sum"})[["l_orderkey", "revenue", "o_orderdate", "o_shippriority"]]

.sort_values(["revenue", "o_orderdate"], ascending=[False, True])

.reset_index(drop=True)

.head(10)

.to_parquet("result.parquet")
)

$ python opt_q3.py:
exec-time: 13 seconds;
memory consumption: 5.5 GB

$ python –mfireducks.pandas opt_q3.py:
exec-time: 4.8 seconds;
memory consumption: 3.4 GB

manual optimization

Refer: https://github.com/fireducks-dev/fireducks/blob/main/notebooks/tpch-query3-pandas-fireducks-cudf.ipynb

https://github.com/fireducks-dev/fireducks/blob/main/notebooks/tpch-query3-pandas-fireducks-cudf.ipynb

© NEC Corporation 202326

Pandas Specific Optimization – Parameter Tuning

res = (
employee.groupby(“department")[“salary"]

.mean()
.sort_values(ascending=False)

)

department-wise average salaries sorted in descending order

department salary (USD)

IT 85,000

Admin 60,000

Finance 100,000

IT 81,000

Finance 95,000

Corporate 78,000

Sales 80,000

department salary (USD)

IT 85,000

IT 81,000

department salary (USD)

Admin 60,000

department salary (USD)

Finance 100,000

Finance 95,000

department salary (USD)

Corporate 78,000

department salary (USD)

Sales 80,000

department salary
(USD)

IT 83,000

Admin 60,000

Finance 97,500

Corporate 78,000

Sales 80,000

department salary
(USD)

Admin 60,000

Corporate 78,000

Finance 97,500

IT 83,000

Sales 80,000

department salary
(USD)

Finance 97,500

IT 83,000

Sales 80,000

Corporate 78,000

Admin 60,000

res = (
employee.groupby(“department“, sort=False)[“salary"]

.mean()
.sort_values(ascending=False)

)

employee table

creating groups

group-wise average-
salary

group-wise average-
salary

sorted by “department”

group-wise average-
salary

sorted by “department”

groupby(“department“, sort=True)

parameter tuning in pandas

df.groupby(["A", "B"])["C"]
.mean()
.sort_values(ascending=Fals

e)

df.groupby(["A", "B"],
sort=False)["C"]

.mean()

.sort_values(ascending=False)

~50 sec ~30 sec

100M
samples with
high-
cardinality

© NEC Corporation 202327

Benchmark (1): DB-Benchmark

Database-like ops benchmark (https://duckdblabs.github.io/db-benchmark)

© NEC Corporation 202328

General Overview: DataFrame Libraries

pandas-compatibility

single-node
performance

(PySpark)

FireDucks

highly-compatiblelook-alike APISQL

(Polars)

(cuDF)
GPU

multi-node
computation is the
main target

single-node
computation is the
main target

© NEC Corporation 202329

Benchmark (2): Speedup from pandas in TPC-H benchmark

FireDucks is >1000x faster than pandas at max AWS EC2 m7i.8xlarge:
Intel(R) Xeon(R) Platinum
8488C (32cores), 128 GB

Server

Comparison of
DataFrame libraries
(average speedup)

FireDucks

Polars

Modin

125x

57x

1x

fa
s
te

r
th

a
n

 p
a
n

d
a
s

s
lo

w
e
r

© NEC Corporation 202330

Scalability: DuckDB vs Polars vs FireDucks

0

2

4

6

8

0 4 8 12 16 20 24 28 32

pandas duckdb polars fireducks

0

2

4

6

8

0 4 8 12 16 20 24 28 32

pandas duckdb polars fireducks

Speedup rate per core
(including IO)

Speedup rate per core
(excluding IO)

number of cores number of cores

1.3x
0.94x

6.5x
5.9x

Libraries that support multi-threading will benefit from a good machine

© NEC Corporation 202331

Resource on FireDucks

https://fireducks-dev.github.io/

Web site (User guide, benchmark, blog)

X(twitter) (Release information)

https://x.com/fireducksdev

Github (Issue report)

https://github.com/fireducks-dev/fireducks

Q/A, communication

https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w

© NEC Corporation 202332

◆Focus more on in-depth data
exploration using “pandas”.

◆Let the “FireDucks” take care
of the optimization for you.

◆Enjoy Green Computing!

Thank You!

Frequently Asked Questions

© NEC Corporation 202334

FAQ: Why FireDucks is highly compatible with pandas?

library - A pandas

from_pandas()

to_pandas()

%load_ext fireducks.pandas ← notebook extension for importhook

import pandas as pd

import numpy as np

%%fireducks.profile ← notebook specific profiler

df = pd.DataFrame({

"id": np.random.choice(list("abcdef"), 10000),

"val": np.random.choice(100, 10000)

})

r1 =(

df.sort_values("id")

.groupby("id")

.head(2)

.reset_index(drop=True)

)

r1["val"] = r1["val"].cumsum()

r1.describe()

When running a python script/program, you
may like to set the environment variable to get

fallback warning logs:
FIREDUCKS_FLAGS=“-Wfallback”

Raise feature request when you encounter
some expensive fallback hindering your
program performance!

Directly communicate with us over our slack
channel for any performance or API related
queries!

Python Frontend
(Pandas API)

fallback

IR Builder

FireDucks

pd.from_pandas(r1[“val”].to_pandas().cumsum())

https://github.com/fireducks-dev/fireducks/issues
https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w

© NEC Corporation 202335

FAQ: How to evaluate Lazy Execution?

def foo(employee, country):
stime = time.time()
m = employee.merge(country, on=“C_Code”)
r = m[m[“Gender”] == “Male”]
print(f”fireducks time: {time.time() – stime} sec”)
return r

IR Builder

create_data_op(…)
merge_op(…)
filter_op(…)

def foo(employee, country):
employee._evaluate()
country._evaluate()
stime = time.time()
m = employee.merge(country, on=“C_Code”)
r = m[m[“Gender”] == “Male”]
r._evaluate()
print(f”fireducks time: {time.time() – stime} sec”)
return r

fireducks time: 0.0000123 sec

fireducks time: 0.02372143 sec

FIREDUCKS_FLAGS="--benchmark-mode”

Use this to disable lazy-execution mode
when you do not want to make any
changes in your existing application
during performance evaluation.

© NEC Corporation 202336

FAQ: How to configure number of cores to be used?

OMP_NUM_THREADS=1

Use this to stop parallel execution, or configure this with the intended
number of cores to be used

Alternatively, you can use the Linux taskset command to bind your
program with specific CPU cores.

	Title Slide_B
	Slide 1: Introducing FireDucks: A Multithreaded DataFrame Library with JIT compiler

	Body
	Slide 2: Agenda
	Slide 3: Quick Introduction!
	Slide 4: Workflow of a Data Scientist
	Slide 5: About Pandas (1/2)
	Slide 6: About Pandas (2/2)
	Slide 7: Performance Challenges & Best Practices to follow
	Slide 8: Quiz: Which one is a better code?
	Slide 9: Best Practice (1): importance of chained expression
	Slide 10: Quiz: Which one is a better code?
	Slide 11: Domain Specific Optimization: Projection Pushdown
	Slide 12: Quiz: What is the performance issue with this data flow?
	Slide 13: Domain Specific Optimization: Predicate Pushdown
	Slide 14: Best Practice (2): importance of execution order
	Slide 15: Introducing FireDucks
	Slide 16: Introducing FireDucks
	Slide 17: Why FireDucks?
	Slide 18: Let’s Have a Quick Demo!
	Slide 19: Usage of FireDucks
	Slide 20: Seamless Integration with pandas: Challenge
	Slide 21: Seamless Integration with pandas: Demo
	Slide 22: Optimization Features
	Slide 23: Compiler Specific Optimizations
	Slide 24: Domain Specific Optimizations: Projection Pushdown, Predicate Pushdown (1/2)
	Slide 25: Domain Specific Optimizations: Projection Pushdown, Predicate Pushdown (2/2)
	Slide 26: Pandas Specific Optimization – Parameter Tuning
	Slide 27: Benchmark (1): DB-Benchmark
	Slide 28: General Overview: DataFrame Libraries
	Slide 29: Benchmark (2): Speedup from pandas in TPC-H benchmark
	Slide 30: Scalability: DuckDB vs Polars vs FireDucks
	Slide 31: Resource on FireDucks
	Slide 32: Thank You!
	Slide 33: Frequently Asked Questions
	Slide 34: FAQ: Why FireDucks is highly compatible with pandas?
	Slide 35: FAQ: How to evaluate Lazy Execution?
	Slide 36: FAQ: How to configure number of cores to be used?

	Purpose_B
	Slide 37

	Corporate Mark
	Slide 38

