
Migrating Monolithic SaaS to 

Serverless: Achieving Scalability, 

Cost Reduction, and 

Development Agility on AWS

BY: Srikar Kompella



Bio

• I am a Senior Software Engineer with over 13 years of expertise in developing 

developing innovative software solutions and specializes in building scalable 

scalable applications, with a focus on payment solutions for Prime Video and 

Video and messaging platforms at Twilio. Skilled in AWS technologies like 

like Lambda and DynamoDB and a strong background in full-stack development 

development across multiple languages, including Python, Java, Kotlin, C# and 

Kotlin, C# and Go. I am an AWS Cloud Practitioner and Oracle Certified Java 

Certified Java Developer, and specialize in leadership, mentoring, and 

contributions to high-visibility projects.

Email reachsrikarkompella@gmail.com

mailto:reachsrikarkompella@gmail.com


Why Choose Golang for Serverless 

Architectures?

• High Performance

• Efficient Memory Management

• Concurrent Programming

Combining Golang with AWS

• Lambda Function Support

• Cost Efficiency

• Seamless Integration with AWS Services



Golang vs. Other Languages (Java, Node.js, Python)

• Performance

• Java

• Node.js

• Python



Why Migrate to Serverless Architecture?

80%
Cost Reduction

Significant savings through pay-for-execution pricing

70%
Faster Deployment

Streamlined pipelines for rapid market responsiveness

60%
Improved Scalability

Automatic handling of demand spikes without pre-

provisioning

provisioning

50%
Operational Gains

Reduced maintenance letting teams focus on innovation



Core AWS Serverless Technologies

AWS Lambda

Executes code in response to triggers without 

without server management. Eliminates 

infrastructure overhead while providing 

automatic scaling and pay-per-execution 

pricing.

Amazon DynamoDB

Managed NoSQL database with consistent 

millisecond performance at any scale. Supports 

document and key-value models with 

automatic scaling that adapts to application 

demands.

API Gateway

Manages API creation and processing to 

connect applications with backend services. 

services. Provides RESTful and WebSocket APIs 

WebSocket APIs with built-in authorization, 

authorization, throttling, and monitoring.



Enhancing Operational Efficiency with AWS S3 and 

and CloudWatch

AWS S3 (Simple Storage Service)

Data Storage and Backup: S3 provides scalable, cost-

effective storage for application data, backups, and logs during 

effective 

during serverless migration.

• Serverless Integration: Seamlessly works with AWS Lambda for 

efficient data operations without infrastructure management.

• Scalability & Durability: Offers unlimited scalability with 

99.999999999% durability, ensuring constant data availability.

availability.

AWS CloudWatch

• Real-time Monitoring and Insights: Provides essential 

observability into serverless application performance.

• Logs & Metrics: Collects data from Lambda, DynamoDB, EC2 

and other services for real-time application insights.

• Dashboards: Offers customizable visualizations of multiple 

multiple AWS resources for comprehensive system 

monitoring.



Migration Strategy: Decomposition

Identify Service Boundaries

Use domain-driven design to map business capabilities and establish service boundaries. Prioritize components with minimal coupl ing as initial migration 

candidates.

Extract Microservices

Refactor components into independent microservices with dedicated data stores. Develop versioned APIs through API Gateway for 

inter

inter

-

-

service communication.

service 

Implement Serverless Functions

Convert microservices to Lambda functions aligned with business operations. Design each function with single responsibility, appropriate triggers, and 

optimized execution.

Transition Traffic Gradually

Use strangler pattern with feature flags and canary deployments to redirect traffic incrementally. Monitor metrics closely to enable quick rollbacks if 

quick rollbacks if needed.



Event-Driven Architecture Design

Event Production

Services publish events on state changes

changes

1

Event Processing

Lambda functions process events 

asynchronously2

State Transformation

System state updates based on event data

data
3

Cascading Events

Updated states trigger new events

4



Database Migration Considerations

Considerations

Relational Database Migration Path Benefits

MySQL/PostgreSQL Aurora Serverless Auto-scaling, 

compatibility

Oracle/SQL Server DynamoDB + Aurora Cost savings, 

performance

MongoDB DocumentDB/DynamoD

B

Managed service, 

scalability

Redis/Memcached ElastiCache/DAX Caching layer, reduced 

latency



Hybrid Deployment Models

Serverless Functions

Lambda for event-driven, 

scalable workloads with 

automatic provisioning and pay-

per-use billing

Container Services

ECS/EKS for stateful, complex 

microservices requiring 

orchestration and consistent 

runtime environments

Managed Services

RDS, ElastiCache, OpenSearch for 

specialized data needs with 

reduced operational overhead

Traditional Infrastructure

Infrastructure

EC2 for resource-intensive or 

legacy workloads requiring full 

full control over compute 

resources



DevOps Integration & CI/CD

Infrastructure as Code Continuous Integration

Deployment Automation Monitoring & Observability



Overcoming Migration Challenges

1

Cold Start Latency

2

Distributed System Complexity

3

Legacy Code Refactoring

4

Security Considerations



Case Study: E-Commerce Platform Migration

• Initial Assessment

• The e-commerce platform faced scalability failures during peak seasons, with 400% slower transaction processing. Analysis identified 

bottlenecks in the monolithic architecture, prioritizing inventory and payment systems for migration.

• First Migration Phase

• Payment processing was extracted into Lambda functions with API Gateway using event-driven architecture. Results: 30% lower 

lower infrastructure costs and 50% faster response times during peak traffic.

• Database Transition

• Product catalog migrated from MySQL to DynamoDB with optimized access patterns. A dual-write approach ensured zero-downtime 

migration while maintaining data consistency across systems.

• Complete Serverless Architecture

• The serverless implementation delivered 80% cost reduction during normal operations while handling 10x traffic surges without

without performance issues. Development cycles improved from monthly releases to multiple daily deployments.

 



Roadmap for Successful Serverless Migration

1
Assess & Plan

Evaluate architecture, identify migration candidates

2
Initial Pilot

Implement proof-of-concept with isolated service

3
Expand & Refine

Scale to critical workloads, optimize architecture patterns

4
Enterprise Transformation

Institutionalize practices, embrace cloud-native culture



Thank you


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

