Al-DRIVEN CHAOS ENGINEERING:

AUTOMATING RESILIENCE TESTING WITH
PREDICTIVE INSIGHTS

SRIMAAN YARRAM

INTRODUCTION TO CHAOS ENGINEERING

Definition: Intentional introduction of failures into a
system to test its resilience.

Purpose: Identify weaknesses before they manifest in
production.

Key Principle: “Embrace failure to build robust
systems.”

CHALLENGES IN PREDICTING REAL-TIME FAILURES

Unpredictable Failures: Despite extensive testing,
unforeseen issues arise in live environments.

Complexity: Modern systems intricacies make it hard to
anticipate all failure modes.

Resource Intensive: Continuous testing can be time-
consuming and costly.

EVOLVING FROM REACTIVE TO PROACTIVE APPROACHES

Traditional Approach Al-Driven Approach

e Manual Fault Injection e Automated Fault Injection

e Knowledge-Based Scenarios e Adaptive & Dynamic Tests

e Limited Real-World Insights e Real-World Data-Driven Testing

e Partial Automation e Full Al Automation

e Static Experimentation e Continuous Learning & Improvemer

e Reactive Approach e Predictive & Proactive

INTEGRATING Al TO PREDICT AND AUTOMATE FAILURES

Al Analysis: Utilize machine learning to analyze
historical logs.

Predictive Modeling: Forecast potential failure
zones.

Automated Injection: Deploy targeted failures
based on Al insights.

KEY OBSERVABILITY TOOLS ANDLOGS =

* New Relic: Application performance monitoring.
e Splunk: Log aggregation and analysis.

e AWS CloudWatch: Infrastructure and application
monitoring.

e Purpose: Collect comprehensive data for Al-driven
insights.

22

Initialize S3 client
s3_client = boto3.client('s3"')

bucket_name, log_file_key = 'your-s3-bucket’',

Fetch log file from S3

'logs/system_logs.csv'

obj = s3_client.get_object(Bucket=bucket_name, Key=log_file_key)

df = pd.read_csv(obj['Body'])

df ['timestamp'] = pd.to_datetime(df['timestamp'])

Define feature columns for anomaly detection

features = ["cpu_usage", "memory_usage", "response_time"]

Apply Isolation Forest model to detect anomalies

df ["anomaly"] = IsolationForest(contamination=0.05, random_state=42).fit _predict(df[features])

df ["anomaly"] = df["anomaly"].map({1: "Normal", -1: "Anomaly"})

Filter detected anomalies

detected_anomalies = df[df["anomaly"] == "Anomaly"]

Create a fault injection experiment based on detected anomalies

experiment = {

"description": "AI-driven fault injection",

"targets": [{

"resource": "EC2", "action": "cpu_stress", "duration": "5m", "intensity": "high"

} for _ in range(len(detected_anomalies))],
"conditions": {"trigger": "when anomaly detected in logs"}

Save experiment configuration to a JSON file
~ with open("fault_injection_experiment.json", "w") as f:

json.dump(experiment, f, indent=4)

Plot anomalies in response time
plt.figure(figsize=(10, 5))

plt.scatter(df["timestamp"], df["response_time"], c=(df["anomaly"] == "Anomaly"), cmap="coolwarm", label="Anomalies")

plt.xlabel("Timestamp"), plt.ylabel("Response Time (ms)")
plt.title("AI-Driven Log Analysis: Detecting Anomalies")
plt.legend(), plt.xticks(rotation=45), plt.show()

Display the detected anomalies in a user-friendly format

import ace_tools as tools

tools.display_dataframe_to_user(name="Detected Log Anomalies", dataframe=detected_anomalies)

"description": "AWS FIS experiment to stop

"targets": {
"TargetInstances": {
“resourceType": "aws:ec2:instance",
"selectionMode": "ALL",
"filters": [
{
"path": '"tags.Name",
"values": ["test-instance"]
}
]
5
}]
"actions": {
"StopInstance": {
"actionId": "aws:ec2:stop-instances",
“parameters": {
“"force": "true"

}
"targets": {
"Instances": "TargetInstances"
}
b
"StartInstance": {
"actionId": "aws:ec2:start-instances",
“"targets": {
"Instances": "TargetInstances"
}

}
H
"schedule": {
"StopInstance": {
ﬂafterl!: NEBSII
}
H

and start an EC2 instance",

SUMMARIZING THE BENEFITS OF AI-DRIVEN
CHAOS ENGINEERING

 Proactive Resilience: Anticipate and mitigate
potential failures.

e Efficiency: Streamlined testing through automation.

e Continuous Improvement: Leverage Al insights for
ongoing system enhancement.

