
Beyond Uptime: Revolutionizing
Fintech Reliability Through SRE
Innovation

In today's landscape, organizations rapidly scaling their AI initiatives face critical

challenges in efficiently managing Kubernetes resources. This presentation

unveils battle-tested optimization strategies that directly impact both

performance and cost efficiency, drawing from extensive experience with large-

scale AI/ML deployments in production environments.

We'll explore advanced techniques that have consistently demonstrated

dramatic improvements in resource utilization rates across diverse workloads,

helping organizations achieve substantial cost reductions while maintaining high

performance for critical ML operations.

Advanced GPU Optimization
Techniques

Multi-Instance GPU (MIG)
Partitioning

Physically partition NVIDIA

A100/H100 GPUs to serve multiple

workloads simultaneously, achieving

up to 7x better GPU utilization in

mixed inference workloads.

CUDA Memory Management

Implement custom memory

allocation strategies to reduce

fragmentation and optimize

TensorCore usage, improving

throughput by 15-30% for common

vision models.

Precision Optimization

Systematically implement mixed and lower precision training/inference (FP16,

INT8) with minimal accuracy loss, reducing memory footprint and increasing

throughput by 2-4x.

These techniques have consistently demonstrated dramatic improvements in GPU

utilization rates across diverse workloads, particularly for organizations running multiple

models simultaneously on shared infrastructure.

Autoscaling Strategies for ML Workloads

Workload Profiling

Analyze historical usage patterns across training and inference to establish baseline resource requirements and identify peak utilization periods.

Custom Metrics Pipeline

Implement Prometheus adapters to expose ML-specific metrics like queue depth, batch processing time, and GPU memory pressure to the

Horizontal Pod Autoscaler.

Predictive Scaling

Deploy time-based scaling rules for recurring workloads and ML-driven predictive scaling for variable loads, reducing cold-start latency by up to

85%.

Buffer Management

Maintain optimal headroom in GPU clusters with deliberate over-provisioning during critical business hours, balanced against aggressive scale-

down during low-demand periods.

Organizations implementing these sophisticated autoscaling strategies have achieved substantial cost reductions while maintaining high availability for critical

inference workloads.

Multi-GPU Training Job Orchestration

Topology-Aware Scheduling

Leverage node affinity rules to ensure multi-GPU jobs run on nodes with optimal NVLink/PCIe connectivity

Distributed Training Frameworks

Optimize Horovod, PyTorch DDP, and TensorFlow distribution strategies with K8s-

aware configurations

Priority-Based Preemption

Implement sophisticated queuing mechanisms with fair-share

allocation across teams

The core of efficient ML operations centers on practical implementations that leverage both native Kubernetes capabilities and specialized

tooling to efficiently handle multi-GPU training jobs. Organizations using these orchestration patterns have seen training job completion

times improve by 30-50% through optimal resource placement and network topology awareness.

Advanced Monitoring and Observability

Root cause analysis

Tracing and correlation across the ML stack

Performance insights

Custom dashboards for ML-specific metrics

Resource utilization

Fine-grained GPU, CPU, memory tracking

Historical data

Long-term metrics storage for capacity planning

Organizations have successfully implemented advanced monitoring frameworks to achieve comprehensive observability across CPU, GPU, and memory

utilization, enabling precise resource management and cost attribution. These systems allow ML engineers to quickly identify bottlenecks in training and

inference pipelines.

The most successful implementations provide both real-time alerts and long-term trend analysis, supporting both immediate troubleshooting and strategic

infrastructure planning.

Storage Optimization for ML Data Pipelines

Distributed File Systems

Implementation of specialized file

systems like WekaFS and Lustre

that have demonstrated up to 10x

improvement in training data

throughput compared to standard

network storage.

• Parallel data access across

hundreds of nodes

• Optimized for small file access

patterns

Data Caching Layers

Deployment of in-memory caching

services between persistent storage

and compute to dramatically

reduce I/O wait times for

frequently accessed datasets.

• Reduced training startup times

by 65%

• Automatic eviction policies for

optimal cache utilization

Storage Tiering

Implementing automated lifecycle

policies to move data between hot,

warm, and cold storage tiers based

on access patterns and workload

requirements.

• 40-60% cost reduction for

storage infrastructure

• Transparent access through

unified namespace

These storage optimization techniques utilizing specialized file systems have demonstrated significant improvements in data

access speeds, directly impacting the efficiency of ML training and inference operations.

Cost Optimization with Spot Instances

Workload Classification

Categorize ML workloads by fault tolerance, checkpoint requirements, and execution time to

identify spot-compatible jobs

Fault Tolerance Implementation

Deploy automated checkpointing systems and stateful recovery mechanisms to gracefully

handle preemption events

Bidding Strategy Optimization

Implement dynamic bidding strategies based on historical pricing data and current market

conditions

Hybrid Deployment Models

Balance spot and on-demand instances with automated workload migration based on

availability and pricing signals

Organizations leveraging these spot instance strategies have achieved cost savings of 60-80% compared to

on-demand pricing, while maintaining acceptable performance for training workloads. The key to

successful implementation is selecting appropriate workloads and implementing robust recovery

mechanisms.

Optimal Node Pool Configurations

Heterogeneous Hardware
Segmentation

Create specialized node pools for

different GPU types (A100, V100, T4)

with workload-specific taints and

tolerations

Resource Ratio Optimization

Fine-tune CPU:GPU:Memory ratios to

match specific ML workload profiles

and prevent resource bottlenecks

Network Topology Alignment

Design node pools to match

underlying network architecture for

optimal multi-node training

performance

3

Cost-Performance Balancing

Implement regular analysis to identify

and adjust underutilized or

overprovisioned node configurations

Optimized node pool configurations have helped organizations achieve remarkable cost savings while maintaining performance.

The most successful implementations continuously evolve their node pool strategy based on workload telemetry and changing

hardware options, rather than using a one-size-fits-all approach.

Resource Quotas and Multi-Tenancy

Namespace Strategy

Implement logical separation between

teams and workload types, using

dedicated namespaces for production

inference vs. experimental training.

• Role-based access controls per

namespace

• Environment-specific configurations

• Isolated networking policies

Resource Controls

Deploy comprehensive quota

management using ResourceQuotas and

LimitRanges to prevent resource

monopolization.

• GPU allocation limits per namespace

• Memory/CPU constraints with

buffers

• Storage quota enforcement

Fair Scheduling

Implement priority classes and weighted

fair queuing to ensure equitable access

during resource contention periods.

• Production workload prioritization

• Guaranteed minimums for all teams

• Hierarchical resource distribution

Effective multi-tenancy has proven crucial for organizations supporting multiple ML teams on shared infrastructure. These

approaches have helped organizations maintain equitable access to limited GPU resources while preventing "noisy neighbor"

problems that can derail critical production workloads.

Real-World Performance Gains

43%
Cost Reduction

Average savings across surveyed organizations after implementing

comprehensive optimization

2.8x
Training Throughput

Average improvement in training job completion time

67%
GPU Utilization

Increase in average cluster-wide GPU utilization

94%
Inference SLA

Average SLA achievement for production ML models

These metrics represent outcomes from organizations that successfully implemented the optimization strategies discussed throughout this

presentation. Results vary based on initial infrastructure efficiency, workload characteristics, and implementation completeness.

The most dramatic improvements typically occur in environments that previously lacked ML-specific resource management approaches and were

applying general-purpose Kubernetes patterns to specialized ML workloads.

Key Takeaways and Implementation Roadmap

Establish Baseline Metrics

Deploy comprehensive monitoring

to understand current resource

utilization patterns and identify the

highest-impact optimization

opportunities specific to your

workloads.

• GPU/CPU utilization across

workload types

• Training job completion times

and variance

• Current infrastructure costs per

model

Implement Quick Wins

Begin with optimization strategies

that offer immediate returns with

minimal disruption to existing

workflows and infrastructure.

• Right-size resource requests and

limits

• Enable basic node autoscaling

• Implement workload-

appropriate storage classes

Deploy Advanced
Optimizations

Gradually implement more

sophisticated techniques to further

enhance performance and efficiency.

• Custom metric-based autoscaling

• Spot instance integration

• Specialized node pools with

topology awareness

Continuous Refinement

Establish processes for ongoing

optimization as workloads evolve

and new technologies emerge.

• Regular efficiency reviews

• Automated cost anomaly

detection

• Infrastructure and model co-

optimization

These optimization techniques have consistently delivered substantial ROI across organizations of varying scales and workload complexities. The key to

successful implementation is a methodical approach that balances immediate efficiency gains with long-term architectural improvements.

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

