
Platform Engineering's Hidden 
Network Challenge

Why Cloud Platforms Ditched Multicast 
and How It Impacts Your Infrastructure 
Automation

Platform engineers building scalable infrastructure today face a hidden 

challenge: the systematic abandonment of native IP multicast in hyperscale 

cloud environments. While multicast technology has proven its ability to reduce 

bandwidth consumption by orders of magnitude in traditional data centers, major 

cloud platforms like GCP and Azure have made the strategic decision to forgo 

native multicast support in their core networking architectures.

By: Srinivas Shamkura



The Multicast Promise

IP multicast was designed to solve a fundamental efficiency problem 

in network communication: how to deliver the same data to multiple 

recipients without overwhelming the sender or consuming excessive 

network bandwidth.

The mathematics of multicast efficiency are compelling. Consider a 

streaming application serving content to ten thousand simultaneous 

viewers:

• With unicast: Source must transmit ten thousand individual 

streams

• With multicast: Source transmits a single stream, and network 

infrastructure handles replication

In bandwidth-constrained environments, this represents a dramatic 

efficiency gain. However, the reality of implementing multicast in 

large-scale, virtualized cloud environments reveals fundamental 

architectural mismatches that platform engineers must understand.



Five Critical Barriers That Broke Multicast

1

State Explosion in Software-Defined Networks

SDN controllers must coordinate multicast forwarding state 

across distributed switching infrastructure while maintaining 

consistency guarantees. When multicast groups form and 

dissolve rapidly in dynamic cloud environments, the resulting 

control plane churn overwhelms centralized controllers.

2

Security Model Incompatibility

Cloud platforms operate under strict multi-tenancy security 

models where customer workloads must remain isolated 

despite sharing physical infrastructure. Traditional multicast 

protocols were designed for trusted network environments 

where all participants operate under unified administrative 

control.



3

Operational Complexity and 
Automation Challenges

Multicast forwarding depends on 

dynamic protocol state distributed 

across network infrastructure. Unlike 

unicast routing, which can be precisely 

controlled through static configuration, 

multicast behavior emerges from 

distributed protocol interactions that are 

difficult to predict and troubleshoot.

4

Performance Degradation in 
Virtualized Environments

While multicast theoretically reduces 

bandwidth consumption through 

efficient replication, the reality in 

virtualized cloud environments is often 

the opposite. The overhead of 

maintaining multicast state and 

processing multicast packets through 

virtualization layers frequently exceeds 

the bandwidth savings.

5

Architectural Mismatch with 
Cloud-Native Patterns

Cloud-native applications follow 

architectural patterns that are 

fundamentally misaligned with 

traditional multicast assumptions. 

Microservices architectures emphasize 

loose coupling and explicit service 

boundaries, while multicast creates 

implicit coupling between publishers 

and subscribers.



Impact on Infrastructure Automation

Migration Challenges

Many enterprise applications, particularly those in financial services, 

telecommunications, and media streaming, rely on multicast for 

efficient data distribution and must be substantially re-architected for 

cloud deployment.

Platform teams often encounter this challenge when migrating legacy 

applications that use multicast for clustering, distributed caching, or 

real-time data feeds. These applications assume multicast availability 

and may not function correctly in cloud environments.

Infrastructure-as-Code Limitations

Infrastructure-as-Code tools like Terraform and CloudFormation 

cannot directly provision multicast-dependent resources, forcing 

platform teams to implement complex workarounds through custom 

scripts and manual configuration steps.

This breaks the declarative infrastructure model that platform 

engineers rely upon for consistent, repeatable deployments across 

environments.



Container Orchestration Complications

Service Discovery Challenges

Service discovery in Kubernetes typically 

relies on DNS-based mechanisms or 

environment variable injection, both of 

which assume point-to-point 

communication patterns. Applications that 

use multicast for dynamic service 

discovery must be modified to work within 

Kubernetes' service abstraction model.

Security Policy Gaps

Network policies in Kubernetes provide 

security controls for pod-to-pod 

communication but are designed for 

unicast traffic patterns. Platform 

engineers cannot use standard 

Kubernetes network policies to control 

multicast traffic, creating security policy 

gaps.

Pod Lifecycle Conflicts

The dynamic nature of pod lifecycle 

management in Kubernetes conflicts with 

multicast group membership assumptions. 

Pods can be created, destroyed, and 

migrated rapidly in response to scaling 

events or node failures.



Alternative Approaches and Workarounds

Application-Level Replication

When native multicast is unavailable, the most straightforward 

alternative is implementing replication logic within applications 

themselves. This approach gives developers complete control over 

group membership management, message delivery semantics, and 

error handling behaviors.

However, it also transfers significant complexity from the network 

layer into application code and can lead to performance 

bottlenecks as subscriber counts increase.

Overlay Network Solutions

Software-defined overlay networks represent another approach to 

providing multicast-like functionality in cloud environments. 

Technologies like VXLAN, Geneve, and proprietary cloud 

networking solutions can create logical network segments that 

span physical infrastructure boundaries.

The primary advantage of overlay approaches is transparency to 

applications. Existing multicast-enabled applications can often run 

unmodified on overlay networks that provide multicast emulation.



More Alternative Approaches

Managed Messaging Services

Cloud platforms offer sophisticated 

managed messaging services that 

can replace multicast for many use 

cases. Amazon SQS, Google Cloud 

Pub/Sub, and Azure Service Bus 

provide reliable, scalable message 

delivery with sophisticated routing 

and filtering capabilities.

Content Delivery Networks

For applications that primarily use 

multicast for content distribution 

rather than real-time 

communication, content delivery 

networks (CDNs) provide an 

effective alternative approach. 

Cloud platforms offer integrated 

CDN services that can efficiently 

distribute content.

Software-Defined Solutions

The networking industry is 

developing new approaches to 

multicast that are specifically 

designed for software-defined, 

cloud-native environments. These 

solutions attempt to preserve the 

efficiency benefits of multicast while 

addressing the operational and 

architectural challenges.



Developer Experience Degradation

Complex Workarounds

The lack of native multicast 

support forces development 

teams to implement complex 

workarounds that degrade 

developer experience and slow 

application development 

velocity.

Environment 
Inconsistency

Local development 

environments often support 

multicast through standard 

operating system networking 

stacks, but cloud deployment 

environments do not. This 

creates a disconnect between 

local development and 

production environments.

Testing Challenges

Testing distributed applications that use multicast becomes significantly 

more complex in cloud environments. Traditional testing approaches that 

rely on multicast must be replaced with alternative mechanisms.



Operational Overhead and Complexity

Multiple Communication 
Patterns

Platform teams must maintain expertise 

in multiple communication patterns and 

technologies to support applications 

with different networking requirements. 

Instead of relying on a unified multicast-

based approach, teams must 

understand and operate various 

alternatives.

Monitoring Complexity

Monitoring and observability become 

more complex when applications use 

multiple communication mechanisms 

instead of standardized multicast 

protocols. Each alternative approach 

requires different monitoring strategies 

and troubleshooting techniques.

Capacity Planning Challenges

Capacity planning becomes more 

challenging without the predictable 

efficiency gains that multicast provides. 

Platform teams must provision additional 

network bandwidth and compute 

resources to handle unicast replication 

overhead.

These operational challenges translate directly into higher costs, longer incident resolution times, and increased risk of service disruptions. 

Platform teams must develop specialized expertise across multiple technologies rather than standardizing on a single approach.



Future Prospects and Emerging Technologies

1SDN-Native Multicast Protocols

The future of multicast in cloud environments likely lies in 

protocols designed specifically for software-defined 

networking architectures. These new approaches recognize 

that centralized control is a feature, not a limitation, and 

design multicast functionality around centralized decision-

making and policy enforcement.

2 Hardware Acceleration and SmartNIC Integration

Programmable network interface cards (SmartNICs) and data 

processing units (DPUs) represent a significant opportunity 

for addressing multicast performance challenges in 

virtualized environments. These devices can perform packet 

replication and processing tasks in dedicated hardware.

3Limited-Scope Multicast Solutions

Rather than attempting to solve multicast's scalability 

challenges across entire cloud platforms, future solutions 

may focus on providing multicast functionality within limited 

network scopes where the operational challenges are more 

manageable.

4 Service Mesh Integration

Service mesh technologies like Istio, Linkerd, and Consul 

Connect are evolving to provide more sophisticated traffic 

management capabilities that could potentially include 

multicast-like functionality.



Serverless and Event-Driven Architectures

The continued evolution of serverless computing platforms and event-driven 

architectures may reduce the need for traditional multicast by providing 

alternative patterns for efficient group communication.

• Serverless functions that respond to events can provide multicast-like fan-out 

behavior while leveraging cloud platform scaling

• Event streaming platforms like Apache Kafka, Amazon Kinesis, and Google 

Cloud Dataflow provide sophisticated message routing

• The serverless event processing model aligns well with cloud-native 

architectural patterns

• Future developments may include more sophisticated event routing 

capabilities that provide multicast-like efficiency for event delivery



Navigating the Multicast-Free Future

Key Insight #1

Efficiency gains from network-level 

optimizations may be negated by 

operational complexity and architectural 

constraints in cloud environments. The 

total cost of ownership includes not just 

resource consumption but also 

operational overhead and development 

complexity.

Key Insight #2

Cloud-native alternatives to traditional 

networking patterns often provide better 

operational characteristics even when 

they appear less efficient at the protocol 

level. Managed services, service mesh 

architectures, and event-driven patterns 

align better with cloud platform 

operational models.

Key Insight #3

The future of efficient group 

communication in cloud environments 

likely lies in solutions designed 

specifically for software-defined, 

centrally controlled architectures rather 

than adaptations of traditional 

distributed protocols.

The most successful platform engineering teams will be those that understand these fundamental constraints and design their infrastructure 

and application architectures to work with cloud platform capabilities rather than against them.



Thank You


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

