Revolutionizing Software Testing with AI and ML:

Driving Scalability and Accuracy in QA

PRESENTATOR: Srinivasa Rao Bittla

02/06/2025

Conf42: Python 2025

CONFERENCES T

Introduction to Software Testing

Software Testing: Ensures software quality and reliability.

Types of Testing:

- Manual Testing: Performed by humans step-by-step.
- Automation Testing: Scripts automate repetitive tasks.

Question: How much time does your team spend on manual testing vs. automation?

Challenges in Traditional Testing

- Manual Testing: Time-consuming, error-prone, hard to scale.
- Automation Testing: Limited to predefined test cases, high maintenance.
- Complex Applications: Require more comprehensive testing.

Question: Can current testing methods keep up with rapid software releases?

Introduction to AI and ML in Testing

- Artificial Intelligence (AI): Mimics human intelligence for problem-solving.
- Machine Learning (ML): Learns patterns from data to make predictions.
- AI/ML Testing Tools: Adapt to changing software, predict defects.

Question: How could AI/ML reduce testing bottlenecks in your projects?

Comparing Traditional vs. AI-Driven Testing

Feature V	Traditional Testing 💛	Al-Driven Testing ∨
Test Case Creation	Manual/Scripted	Al-Generated
Script Maintenance	High Effort	Self-Healing Scripts
Defect Detection	Reactive	Predictive Analytics
Scalability	Limited	Highly Scalable
Accuracy	Human Errors Possible	High Precision

Question: Which feature do you think makes AI testing superior?

How Al and ML Enhance Testing

- Dynamic Test Case Generation: Al creates new test cases from user behavior.
- Self-Healing Scripts: ML updates test scripts automatically after code changes.
- Predictive Analytics: Forecasts high-risk areas in applications.

Question: What parts of your testing lifecycle could benefit from automation?

Demo - Dynamic Test Case Generation

def step_impl(context, product):

assert product in context.browser.page source

Case Study 1 – Self Healing

Problem: Frequent updates led to broken links and bugs.

Solution: AI detected UI issues and optimized workflows.

Result:

- 30% reduction in testing time.
- 45% increase in bug detection rate.

Question: How would faster bug detection impact your product delivery?

Case Study 1 – Self Healing

Automatic Learning: Healenium learns about locator changes over time and stores healed locators for future executions.

If the locator
(By.name("search") or
By.id("search-button"))
changes in the UI, Healenium will
detect the failure and
automatically search for similar
elements in the DOM to replace
the broken locator.

```
<dependency>
     <groupId>com.epam.healenium</groupId>
          <artifactId>healenium-web</artifactId>
          <version>3.3.2</version>
</dependency>
```

https://github.com/Srimaan/SelfHealing-Healenium

Testim.io

Functionize

SpecFlow

ChatGPT (OpenAI)

Cucumber (Al-integrated)

Test.ai

Mabl

*

*

*

Yes

Yes

Yes

Yes

Yes

Yes

No (Al optional) -

No (Al optional) -

AI - TOOLS										
Tool/Model	*	Test Case Generation	>	Code Generation	¥	Supported Frameworks	*	0	AI-Powered	*

Cucumber, Behave, SpecFlow

Selenium, Cypress

Custom frameworks

Custom for mobile apps

Browser-based frameworks

Java, JavaScript, Python, Ruby

Behave, Cucumber

.NET (C#)

OpenAl Codex Yes (via natural language)

Yes

Yes

Yes

Yes

Yes

Manual

Yes (automated)

Yes (step definitions) Yes

Yes

Yes

Yes

Yes

Yes

Yes

Case Study 2 – Predictive Analysis

Predictive Analysis for Defect Detection involves using historical defect data, testing metrics, and machine learning algorithms to predict potential defects in software before they occur.

Case Study 2 – Predictive Analysis Process

Data Collection:

Defect Reports
Code Metrics
Test Metrics
Release Data
Developer Activity

Data Preprocessing:

- Handle Missing Values
- FeatureEngineering
- Encoding
- Normalization

Exploratory Data Analysis (EDA):

Correlation
High-risk areas
Visualization

Feature Selection:

Code Complexity
Metrics
Change Metrics
Test Coverage.
Developer Activity.

Model Selection:

Classification Models

Models
Clustering Models
Deep Learning Models

Model Training and Evaluation:

- Split data into
 training and test sets
 Train the selected
- model
 Evaluate using
- metrics: Accuracy,
 Precision & Recall,
 F1-Score, ROC-AUC

Prediction and Defect Risk Analysis

- Predict which features are prone to defects.
- Prioritize high-risk modules for intensive testing.

resources effectively.

- Use predictions to allocate testing

Data Collection:

- -Continuous Learning Continuously update models with new defect data.
- -Implement feedback loops for model improvement.

Case Study 2 – Predictive Analysis Tools

Case Study 2 – ML in Mobile App Testing

Problem: Device fragmentation caused inconsistent user experiences.

Solution: ML identified device-specific issues and optimized testing.

Result:

- 50% reduction in app crashes.
- 60% increase in device compatibility.

Question: Do you face challenges testing across multiple devices?

Metrics That Matter

Speed: Al reduces test execution time by up to 70%.

Coverage: ML expands test coverage by 60%.

Accuracy: Al improves defect prediction accuracy by 40%.

Question: Which metric is most critical for your team's success?

Tools and Technologies in AI/ML Testing

Popular Tools:

- Selenium with AI plugins (Healium)
- Test.ai
- Applitools (Visual AI)
- Mabl (Intelligent Testing)

Question: Which AI tool would you like to explore further?

Technologies:

- Natural Language Processing (NLP)
- Predictive Analytics
- Computer Vision

Comparing AI Models and Tools for BDD Test Generation

Tool/Model ∨	Test Case Generation	Code Generation	Supported Frameworks	AI-Powered ∨	
OpenAl Codex	Yes (via natural language)	Yes (step definitions)	Cucumber, Behave, SpecFlow	Yes	
<u>Testim.io</u>	Yes (automated)	Yes	Selenium, Cypress	Yes	
Functionize	Yes	Yes	Custom frameworks	Yes	
SpecFlow	Manual	Yes	.NET (C#)	No (Al optional)	
<u>Test.ai</u>	Yes	Yes	Custom for mobile apps	Yes	
ChatGPT (OpenAI)	Yes	Yes	Behave, Cucumber	Yes	
Mabl	Yes	Yes	Browser-based frameworks	Yes	
Cucumber (Al-integrated)	Yes	Yes	Java, JavaScript, Python, Ruby	No (Al optional)	

Implementing AI/ML in QA

Step 1: Identify repetitive testing tasks.

Step 2: Choose suitable AI/ML tools.

Step 3: Start with pilot projects.

Step 4: Scale AI integration across workflows.

Question: What's the first step your team can take toward AI testing?

Challenges in Adopting AI/ML

Initial Costs: Tool acquisition and training.

Data Dependency: Requires quality data for learning.

Change Management: Resistance to adopting new methods.

Question: What challenges could your team face when adopting AI in testing?

Future of QA with AI/ML

Autonomous Testing: AI will handle testing end-to-end.

Real-Time Defect Prediction: Faster issue resolution.

Continuous Learning: AI adapts to new technologies.

Question: How do you envision the future of software testing?

Key Takeaways

AI/ML: Boosts testing speed, accuracy, and scalability.

Real Results: Proven case studies show measurable improvements.

Adoption: Start small, scale with confidence.

Question: What key insight will you apply to your QA process?

Thank you! Let's discuss your thoughts and questions.

Contact Information:

Srinivasa Rao Bittl sbittla@gmail.com

https://www.linkedin.com/in/bittla/

https://www.bittla.me/

Question: What would you like to explore more in AI-driven QA?