Revolutionizing Software Testing with Al and ML:
Driving Scalability and Accuracy in QA

PRESENTATOR: Srinivasa Rao Bittla

02/06/2025
Conf42: Python 2025

CONFU2CAST




Software Testing: Ensures software quality and reliability.

Types of Testing:

e Manual Testing: Performed by humans step-by-step.
e Automation Testing: Scripts automate repetitive tasks.




Manual Testing: Time-consuming, error-prone, hard to scale.
Automation Testing: Limited to predefined test cases, high
maintenance.

Complex Applications: Require more comprehensive testing.




Artificial Intelligence (Al): Mimics human intelligence for
problem-solving.

Machine Learning (ML): Learns patterns from data to make
predictions.

Al/ML Testing Tools: Adapt to changing software, predict
defects.







Dynamic Test Case Generation: Al creates new test cases from
user behavior.

Self-Healing Scripts: ML updates test scripts automatically
after code changes.

Predictive Analytics: Forecasts high-risk areas in applications.




Prompt: "Generate 2 RNN <renarin and

Python Behave tesi from behave import given, when, then
an e-commerce apj
@given('l am on the homepage’)
def step_impl(context):
context.browser.get('https:/ecommerce-site.com’)

Feature: Product Search @when('l search for "{product}")
def step_impl(context, product):
Scenario: Search for a product search_box = context.browser.find_element_by _name('q’)
Given | am on the homepage search_box.send_keys(product)
When | search for "laptop” search_box.submit()
Then | should see results for "laptog
@then('l should see results for "{product}")
def step_impl(context, product):
assert product in context.browser.page_source




Problem: Frequent updates led to broken links and bugs.

Solution: Al detected Ul issues and optimized workflows.

Result:

e 30% reduction in testing time.
e 45% increase in bug detection rate.



Automatic Learning: Healenium learns about locator changes over time
and stores healed locators for future executions.

If the locator
(By.name("scarch™) or
By.id("search-button"))
changes in the Ul, Healenium will
detect the failure and
automatically search for similar
elements in the DOM to replace
the broken locator.

<dependency>
<groupld>com.epam.healenium</groupld>
<artifactld>healenium-web</artifactld>
<version>3.3.2</version>

</dependency>

https://github.com/Srimaan/SelfHealing-Healenium






Predictive Analysis for Defect Detection involves using historical defect data, testing
metrics, and machine learning algorithms to predict potential defects in software before
they occur.



Case Study 2 - rocess

" Exploratory Dat "
Data Collection: Data Preprocessing: Feature Selection:

- Handle Missing

Values ,
Code Metrics _ Feature Correlation Code Complexity

Test Metrics Engineering High-risk areas
Release Data - Encoding Visualization
Developer Activity

Defect Reports

Change Metrics
g Test Coverage.
- Normalization Developer Activity.

Model Selection: Defect Risk Analvsis Data Collection:

- Predict which
features are prone to

- Train the selected AT models with new

- Split data into
training and test sets

-Continuous Learning
Continuously update
Classification model - Prioritize hi'gh—ris.k defect data.
Mod modules for intensive

odels _ Evaluate using testing -Implement feedback

Clustering Models loops for model

Deep Learning Models e - Use predictions to improvement.

Precision & Recall, allocate testing
F1-Score, ROC-AUC resources effectively.




There are several tools and frameworks designed to
implement Predictive Analysis for Defect Detection using

historical defect data, testing metrics, and machine learning
algorithms.

These tools help predict potential defects in software before
they occur, leading to proactive quality assurance and faster
delivery cycles.




Problem: Device fragmentation caused inconsistent user
experiences.

Solution: ML identified device-specific issues and optimized
testing.

Result:

e 50% reduction in app crashes.
e 60% increase in device compatibility.




Speed: Al reduces test execution time by up to 70%.

Coverage: ML expands test coverage by 60%.

Accuracy: Al improves defect prediction accuracy by 40%.




Popular Tools:

Selenium with Al plugins (Healium)
Test.ai
Applitools (Visual Al)

Mabl (Intelligent Testing) _

Technologies:

e Natural Language Processing (NLP)
e Predictive Analytics
e Computer Vision






Step 1. Identify repetitive testing tasks.

Step 2: Choose suitable AI/ML tools.

Step 3: Start with pilot projects.

Step 4: Scale Al integration across workflows.




Initial Costs: Tool acquisition and training.

Data Dependency: Requires quality data for learning.

Change Management: Resistance to adopting new methods.




Autonomous Testing: Al will handle testing end-to-end.

Real-Time Defect Prediction: Faster issue resolution.

Continuous Learning: Al adapts to new technologies.




Al/ML: Boosts testing speed, accuracy, and scalability.

Real Results: Proven case studies show measurable
improvements.

Adoption: Start small, scale with confidence.




Thank you! Let’s discuss your thoughts and questions.

Contact Information:

Srinivasa Rao Bittl
sbittla@gmail.com
https:/www.linkedin.com/in/bittla/
https:/www.bittla.me/




