
Revolutionizing Software Testing with AI and ML:

02/06/2025
Conf42: Python 2025

PRESENTATOR: Srinivasa Rao Bittla

Driving Scalability and Accuracy in QA

Introduction to Software Testing

Software Testing: Ensures software quality and reliability.

Types of Testing:

● Manual Testing: Performed by humans step-by-step.
● Automation Testing: Scripts automate repetitive tasks.

Question: How much time does your team spend on
manual testing vs. automation?

Challenges in Traditional Testing

● Manual Testing: Time-consuming, error-prone, hard to scale.
● Automation Testing: Limited to predefined test cases, high

maintenance.
● Complex Applications: Require more comprehensive testing.

Question: Can current testing methods keep up with
rapid software releases?

Introduction to AI and ML in Testing

● Artificial Intelligence (AI): Mimics human intelligence for
problem-solving.

● Machine Learning (ML): Learns patterns from data to make
predictions.

● AI/ML Testing Tools: Adapt to changing software, predict
defects.

Question: How could AI/ML reduce testing bottlenecks
in your projects?

Comparing Traditional vs. AI-Driven Testing

Question: Which feature do you think makes AI testing
superior?

How AI and ML Enhance Testing

● Dynamic Test Case Generation: AI creates new test cases from
user behavior.

● Self-Healing Scripts: ML updates test scripts automatically
after code changes.

● Predictive Analytics: Forecasts high-risk areas in applications.

Question: What parts of your testing lifecycle could
benefit from automation?

Demo - Dynamic Test Case Generation

User
Prompt

Prompt: "Generate a BDD scenario and
Python Behave test for searching products in
an e-commerce app."

Feature: Product Search

 Scenario: Search for a product
 Given I am on the homepage
 When I search for "laptop"
 Then I should see results for "laptop"

from behave import given, when, then

@given('I am on the homepage')
def step_impl(context):
 context.browser.get('https://ecommerce-site.com')

@when('I search for "{product}"')
def step_impl(context, product):
 search_box = context.browser.find_element_by_name('q')
 search_box.send_keys(product)
 search_box.submit()

@then('I should see results for "{product}"')
def step_impl(context, product):
 assert product in context.browser.page_source

Case Study 1 – Self Healing

Problem: Frequent updates led to broken links and bugs.

Solution: AI detected UI issues and optimized workflows.

Result:

● 30% reduction in testing time.
● 45% increase in bug detection rate.

Question: How would faster bug detection impact your
product delivery?

Case Study 1 – Self Healing

Automatic Learning: Healenium learns about locator changes over time
and stores healed locators for future executions.

If the locator
(By.name("search") or
By.id("search-button"))
changes in the UI, Healenium will
detect the failure and
automatically search for similar
elements in the DOM to replace
the broken locator.

<dependency>
<groupId>com.epam.healenium</groupId>
 <artifactId>healenium-web</artifactId>
<version>3.3.2</version>

</dependency>

https://github.com/Srimaan/SelfHealing-Healenium

AI – Tools

Case Study 2 – Predictive Analysis
Predictive Analysis for Defect Detection involves using historical defect data, testing
metrics, and machine learning algorithms to predict potential defects in software before
they occur.

Case Study 2 – Predictive Analysis Process

Defect Reports
Code Metrics
Test Metrics
Release Data
Developer Activity

Data Collection:
- Handle Missing
Values
- Feature
Engineering
- Encoding
- Normalization

Data Preprocessing:

Correlation
High-risk areas
Visualization

Exploratory Data
Analysis (EDA):

Code Complexity
Metrics
Change Metrics
Test Coverage.
Developer Activity.

Feature Selection:

Classification
Models
Clustering Models
Deep Learning Models

Model Selection:

- Split data into
training and test sets
- Train the selected
model
- Evaluate using
metrics:Accuracy,
Precision & Recall,
F1-Score, ROC-AUC

Model Training and
Evaluation:

- Predict which
features are prone to
defects.
- Prioritize high-risk
modules for intensive
testing.
- Use predictions to
allocate testing
resources eȨectively.

Prediction and
Defect Risk Analysis

-Continuous Learning
Continuously update
models with new
defect data.
-Implement feedback
loops for model
improvement.

Data Collection:

Case Study 2 – Predictive Analysis Tools

There are several tools and frameworks designed to
implement Predictive Analysis for Defect Detection using
historical defect data, testing metrics, and machine learning
algorithms.

These tools help predict potential defects in software before
they occur, leading to proactive quality assurance and faster
delivery cycles.

Case Study 2 – ML in Mobile App Testing

Problem: Device fragmentation caused inconsistent user
experiences.

Solution: ML identified device-specific issues and optimized
testing.

Result:

● 50% reduction in app crashes.
● 60% increase in device compatibility.

Question: Do you face
challenges testing across
multiple devices?

Metrics That Matter

Speed: AI reduces test execution time by up to 70%.

Coverage: ML expands test coverage by 60%.

Accuracy: AI improves defect prediction accuracy by 40%.

Question: Which metric is most critical for your team’s
success?

Tools and Technologies in AI/ML Testing

Popular Tools:

● Selenium with AI plugins (Healium)
● Test.ai
● Applitools (Visual AI)
● Mabl (Intelligent Testing)

Technologies:

● Natural Language Processing (NLP)
● Predictive Analytics
● Computer Vision

Question: Which AI tool would you like
to explore further?

Comparing AI Models and Tools for BDD Test Generation

Implementing AI/ML in QA

Step 1: Identify repetitive testing tasks.

Step 2: Choose suitable AI/ML tools.

Step 3: Start with pilot projects.

Step 4: Scale AI integration across workflows.

Question: What’s the first step your team can take
toward AI testing?

Challenges in Adopting AI/ML

Initial Costs: Tool acquisition and training.

Data Dependency: Requires quality data for learning.

Change Management: Resistance to adopting new methods.

Question: What challenges could your team face when
adopting AI in testing?

Future of QA with AI/ML

Autonomous Testing: AI will handle testing end-to-end.

Real-Time Defect Prediction: Faster issue resolution.

Continuous Learning: AI adapts to new technologies.

Question: How do you envision the future of software
testing?

Key Takeaways

AI/ML: Boosts testing speed, accuracy, and scalability.

Real Results: Proven case studies show measurable
improvements.

Adoption: Start small, scale with confidence.

Question: What key insight will you apply to your QA
process?

Thank you! Let’s discuss your thoughts and questions.

Contact Information:
Srinivasa Rao Bittl
sbittla@gmail.com
https://www.linkedin.com/in/bittla/
https://www.bittla.me/

Question: What would you like to explore more in
AI-driven QA?

Q&A

