Kube-Native ETL at
Scale: Optimizing
PySpark + Airtflow
Worktlows in Cloud-
Native Environments

Presented by: Sruthi Erra Hareram

Independent Researcher, Canada

Conf42.com Incident Management 2025

Agenda: Scaling ETL in Kubernetes Environments

Cloud-Native ETL Architecture

Container-based pipelines and architectural patterns
9 PySpark Performance Optimization

Memory management, join strategies, and execution planning
3 Airtlow Orchestration Techniques

Dynamic DAG creation, resilience patterns, and monitoring
4 Real-World Case Studies

Telecom and media deployments with 5TB+ daily processing
5 Implementation Roadmap

Actionable patterns for your organization

The ETL Scaling Challenge

Scaling ETL processes presents significant challenges for

enterprises, hindering effective data leverage due to:

 |nefficient resource allocation and slow infrastructure

provisioning.

« Limited pipeline visibility and complex dependency

management.
« Brittle, monolithic processing jobs.

« Escalating data volumes and high operational overhead.

These systemic challenges lead to delays in data availability, increased operational costs, and a reactive approach to data
management. Overcoming them necessitates a fundamental transformation towards more agile, automated, and scalable

architectures for truly data-driven decision-making.

Cloud-Native ETL Architecture

Containerization Benefits

Isolates dependencies, ensures
reproducibility across
environments, and enables precise
resource allocation for ETL
pipelines.

Kubernetes as Compute
Fabric

Provides dynamic scaling of worker
pods, namespace isolation for
multi-tenancy, and robust resource
governance.

\/
v
- >
e

-

-

=

.

>

Infrastructure-as-Code
(IaC)

Leverages Terraform and Helm for
declarative deployment, fostering
automated GitOps workflows.

PySpark on Kubernetes: Core Optimization
Techniques

0

Memory Management

Right-sized executor memory

allocation (4-8GB optimal)

Strategic caching with persist()

at materialization points

Memory fraction tuning (0.6 for

execution, 0.2 for storage)

Join Optimization
« Broadcast hash joins for
dimension tables (<I00MB)

« Sort-merge joins for large fact

tables

« Skew handling with salting

techniques

=

Fault Tolerance

Strategic checkpointing for

lineage truncation

Dynamic partition discovery with

predicate pushdown

K8s-aware restart policies with

idempotent writers

Pertormance Benchmarks: Betore & After Optimization

120

80

40

lab Diiration (mMin)

Memorv | lcaoce ((GR)

Fveciitar Coilint

Chiiffle Data (GR)

Eailiire Rate (04)

Airtlow on Kubernetes: Modernizing
Orchestration

Cloud Composer/K8s-native Benefits

« Scheduler Scalability: Horizontally scaled for 1,000+ daily DAG runs
« Worker Isolation: Task-specific resource profiles via Pod templates

« Security: Workload identity for IAM integration and secrets

management

« Observability: Native integration with Cloud Logging/Monitoring

Managed Airflow environments provide with

drastically reduced operational overhead.

Advanced Airtlow Patterns for Resilient ETL

1 Dynamic DAG Generation

Programmatically generate DAGs from configuration
stores (GCS/S3) to support hundreds of pipeline

variations with minimal code duplication.

3 Backfill-Safe Design

Employ logical timestamps and idempotent
operations to enable safe historical reprocessing

without data corruption or duplication.

2

Intelligent Branching

Implement data-aware routing with
BranchPythonOperator to conditionally execute
specific pipeline segments based on quality checks or

volume thresholds.

SLA Monitoring

Custom SLA callbacks tied to monitoring systems
(Datadog, Prometheus) for proactive alerting and

anomaly detection.

Spark Executor Sizing: The Art of Resource Allocation

High Efficiency
Tiny Executors — many small JVMs, fast Medium Balanced — moderate cores and
startup memory
Optimal Utilization
Poor Utilization)
Large Executors — few big JVMs, high Dynamic Allocation — autoscale
throughput executors by load

Low Efficiency

Monitoring & Observability: The Reliability
Foundation

Real-time
Monitoring

Leverage Prometheus for
cluster and Spark metrics,
crucial for detecting
resource saturation and
performance bottlenecks.

é‘ib;k 0 ?(;9-K o a4

Structured Logging
& Tracing

Implement JSON logs with
correlation IDs and
OpenTelemetry for end-to-
end tracing, identifying
bottlenecks and lineage.

Data Quality &
Alerting

Integrate automated data
profiling (e.g., Great
Expectations) to proactively
identify anomalies and
configure alerts for critical
KPIs.

S71.4l6 sa g

. - | _
Ml © = e

Cost Monitoring

Track resource consumption
and associated cloud costs
for individual Spark
applications and Airflow
DAGs to identify
inefficiencies and optimize
budget.

Modernization Journey: From Legacy Batch to Cloud-

Native ETL

Phase 1: Assessment

Inventory existing jobs, performance profiling, and dependency

mapping. Identify migration candidates based on business impact.

Phase 3: Orchestration

Implement Airflow DAGs with proper dependency management.

Set up environment-specific configurations using Airflow variables.

Phase 5: Operationalization

Cl/CD pipelines, monitoring integration, and SLA management.

Documentation and knowledge transfer.

Phase 2: Containerization

Refactor monolithic scripts into modular components with clear
interfaces. Package with Docker using multi-stage builds for

efficiency.

Phase 4: Optimization

Performance tuning, resource right-sizing, and implementation of

retry/recovery mechanisms for resilience.

Common Pitfalls and How to Avoid Them

— Resource Misallocation

Over-provisioning executors leads to inefficient

cluster usage; under-provisioning causes job failures.

Use dynamic allocation with reasonable bounds.

— Excessive Shuffling

Data skew and unnecessary repartitioning create
bottlenecks. Profile with Spark Ul to identify and

refactor problematic transformations.

%

Inappropriate Storage Formats

Using CSV/JSON for large datasets instead of
Parquet/ORC. Implement columnar storage with

compression for 3-5x performance gains.

Orphaned Resources

Failed jobs leaving dangling pods and persistent
volumes. Implement proper cleanup hooks and

resource quotas as safeguards.

Implementation Roadmap: Getting Started

Start Small

Begin with a single non-critical pipeline as a proof-of-
concept. Document baseline metrics before migration for

comparison.

Migrate Gradually

Convert jobs incrementally, running in parallel with legacy
systems. Implement comprehensive logging and

monitoring from day one.

Build Infrastructure

Set up Kubernetes cluster with appropriate node pools.
Deploy Airflow using the Helm chart with customized

values. Configure networking and security.

Optimize Continuously

Establish regular performance reviews. Create a tuning
playbook based on production observations. Share

knowledge across teams.

Key Takeaways: The Path to ETL Excellence

Architectural Discipline

Container-native design principles deliver portability and

scalability benefits that far outweigh migration effort.

Resilient Orchestration

Invest in robust DAG design patterns with proper error
handling to achieve high reliability even with variable data

quality.

Performance Optimization

Systematic tuning of PySpark parameters based on
workload characteristics can yield 30-50% efficiency

improvements.

Operational Excellence

End-to-end observability and SLA monitoring are not
optional—they're foundational for maintaining data

pipeline trust.

Thank You

