
Kube-Native ETL at 
Scale: Optimizing 
PySpark + Airflow 
Workflows in Cloud-
Native Environments
Presented by: Sruthi Erra Hareram

Independent Researcher, Canada

Conf42.com Incident Management 2025



Agenda: Scaling ETL in Kubernetes Environments

1
Cloud-Native ETL Architecture

Container-based pipelines and architectural patterns

2
PySpark Performance Optimization

Memory management, join strategies, and execution planning

3
Airflow Orchestration Techniques

Dynamic DAG creation, resilience patterns, and monitoring

4
Real-World Case Studies

Telecom and media deployments with 5TB+ daily processing

5
Implementation Roadmap

Actionable patterns for your organization



The ETL Scaling Challenge

Scaling ETL processes presents significant challenges for 

enterprises, hindering effective data leverage due to:

• Inefficient resource allocation and slow infrastructure 

provisioning.

• Limited pipeline visibility and complex dependency 

management.

• Brittle, monolithic processing jobs.

• Escalating data volumes and high operational overhead.

These systemic challenges lead to delays in data availability, increased operational costs, and a reactive approach to data 

management. Overcoming them necessitates a fundamental transformation towards more agile, automated, and scalable 

architectures for truly data-driven decision-making.



Cloud-Native ETL Architecture

Containerization Benefits

Isolates dependencies, ensures 

reproducibility across 

environments, and enables precise 

resource allocation for ETL 

pipelines.

Kubernetes as Compute 
Fabric

Provides dynamic scaling of worker 

pods, namespace isolation for 

multi-tenancy, and robust resource 

governance.

Infrastructure-as-Code 
(IaC)

Leverages Terraform and Helm for 

declarative deployment, fostering 

automated GitOps workflows.



PySpark on Kubernetes: Core Optimization 
Techniques

Memory Management

• Right-sized executor memory 

allocation (4-8GB optimal)

• Strategic caching with persist() 

at materialization points

• Memory fraction tuning (0.6 for 

execution, 0.2 for storage)

Join Optimization

• Broadcast hash joins for 

dimension tables (<100MB)

• Sort-merge joins for large fact 

tables

• Skew handling with salting 

techniques

Fault Tolerance

• Strategic checkpointing for 

lineage truncation

• Dynamic partition discovery with 

predicate pushdown

• K8s-aware restart policies with 

idempotent writers



Performance Benchmarks: Before & After Optimization



Airflow on Kubernetes: Modernizing 
Orchestration

Cloud Composer/K8s-native Benefits

• Scheduler Scalability: Horizontally scaled for 1,000+ daily DAG runs

• Worker Isolation: Task-specific resource profiles via Pod templates

• Security: Workload identity for IAM integration and secrets 

management

• Observability: Native integration with Cloud Logging/Monitoring

Managed Airflow environments provide 99.9% scheduler uptime with 

drastically reduced operational overhead.



Advanced Airflow Patterns for Resilient ETL

1 Dynamic DAG Generation

Programmatically generate DAGs from configuration 

stores (GCS/S3) to support hundreds of pipeline 

variations with minimal code duplication.

2 Intelligent Branching

Implement data-aware routing with 

BranchPythonOperator to conditionally execute 

specific pipeline segments based on quality checks or 

volume thresholds.

3 Backfill-Safe Design

Employ logical timestamps and idempotent 

operations to enable safe historical reprocessing 

without data corruption or duplication.

4 SLA Monitoring

Custom SLA callbacks tied to monitoring systems 

(Datadog, Prometheus) for proactive alerting and 

anomaly detection.



Spark Executor Sizing: The Art of Resource Allocation

Poor Utilization

Low Efficiency

Optimal Utilization

High Efficiency

Large Executors — few big JVMs, high 
throughput

Dynamic Allocation — autoscale 
executors by load

Medium Balanced — moderate cores and 
memory

Tiny Executors — many small JVMs, fast 
startup

Finding the optimal Spark executor configuration requires balancing:



Monitoring & Observability: The Reliability 
Foundation

Real-time 
Monitoring

Leverage Prometheus for 

cluster and Spark metrics, 

crucial for detecting 

resource saturation and 

performance bottlenecks.

Structured Logging 
& Tracing

Implement JSON logs with 

correlation IDs and 

OpenTelemetry for end-to-

end tracing, identifying 

bottlenecks and lineage.

Data Quality & 
Alerting

Integrate automated data 

profiling (e.g., Great 

Expectations) to proactively 

identify anomalies and 

configure alerts for critical 

KPIs.

Cost Monitoring

Track resource consumption 

and associated cloud costs 

for individual Spark 

applications and Airflow 

DAGs to identify 

inefficiencies and optimize 

budget.



Modernization Journey: From Legacy Batch to Cloud-
Native ETL

1Phase 1: Assessment

Inventory existing jobs, performance profiling, and dependency 

mapping. Identify migration candidates based on business impact.

2 Phase 2: Containerization

Refactor monolithic scripts into modular components with clear 

interfaces. Package with Docker using multi-stage builds for 

efficiency.3Phase 3: Orchestration

Implement Airflow DAGs with proper dependency management. 

Set up environment-specific configurations using Airflow variables.
4 Phase 4: Optimization

Performance tuning, resource right-sizing, and implementation of 

retry/recovery mechanisms for resilience.
5Phase 5: Operationalization

CI/CD pipelines, monitoring integration, and SLA management. 

Documentation and knowledge transfer.



Common Pitfalls and How to Avoid Them

Resource Misallocation

Over-provisioning executors leads to inefficient 

cluster usage; under-provisioning causes job failures. 

Use dynamic allocation with reasonable bounds.

Excessive Shuffling

Data skew and unnecessary repartitioning create 

bottlenecks. Profile with Spark UI to identify and 

refactor problematic transformations.

Inappropriate Storage Formats

Using CSV/JSON for large datasets instead of 

Parquet/ORC. Implement columnar storage with 

compression for 3-5x performance gains.

Orphaned Resources

Failed jobs leaving dangling pods and persistent 

volumes. Implement proper cleanup hooks and 

resource quotas as safeguards.



Implementation Roadmap: Getting Started

Start Small

Begin with a single non-critical pipeline as a proof-of-

concept. Document baseline metrics before migration for 

comparison.

Build Infrastructure

Set up Kubernetes cluster with appropriate node pools. 

Deploy Airflow using the Helm chart with customized 

values. Configure networking and security.

Migrate Gradually

Convert jobs incrementally, running in parallel with legacy 

systems. Implement comprehensive logging and 

monitoring from day one.

Optimize Continuously

Establish regular performance reviews. Create a tuning 

playbook based on production observations. Share 

knowledge across teams.



Key Takeaways: The Path to ETL Excellence

Architectural Discipline

Container-native design principles deliver portability and 

scalability benefits that far outweigh migration effort.

Performance Optimization

Systematic tuning of PySpark parameters based on 

workload characteristics can yield 30-50% efficiency 

improvements.

Resilient Orchestration

Invest in robust DAG design patterns with proper error 

handling to achieve high reliability even with variable data 

quality.

Operational Excellence

End-to-end observability and SLA monitoring are not 

optional—they're foundational for maintaining data 

pipeline trust.



Thank You


