
Turning Synthetic Traces into Gold:
Scalable Monitoring for Critical User
Journeys

June, 2025
Sudeep Kumar

Principal Engineer, Salesforce

Monitoring Cloud

1M+ Hosts/
Containers

Monitoring at scale

10+
Languages/OS

Java, Go, Python, Ruby,
NodeJS, C++, PHP
Windows, Linux

50+ Data Centers

13k+ Developers

2k+ Teams

5k+ Services

140B/hour
metrics

300M/day
Synth.

600k
alerts/min

300B+/day
spans

1PB/day
logs

Critical User Journeys (CUJs)

“Hunting Down Hero Flows! 󰡷 🚀”

➢ Emulate an end user’s journey (High value request flows)

➢ Often customer facing & business critical experiences

➢ A single user action involved in a CUJ often traverses many services

➢ Monitoring to ensure availability & performance for key transaction flows

Distributed Tracing

CUJs with Distributed Tracing

➢ Which services are involved in critical path?

➢ Tracking health of CUJ transactions

➢ Discover unwanted or unsafe access patterns

➢ Understand performance bottlenecks

➢ Reduce TTD/TTR

Instrumenting Applications — one span at a time! 👣

How does
Distributed

Tracing help ?

● Provides Distributed tracing for all Salesforce services

● Centralized collection of traces

● Trace Telemetry Signal Sources
○ APM agents

○ Custom trace instrumentation

○ Managed frameworks

○ Service Mesh infra for k8s workloads

○ Integration Tests

● Some numbers
○ ~300 Mill spans per min

○ ~10 million unique traces reported per min

 Tracer Platform

A

B

C

E

F

G

HD Services 0ms 1,000ms 2,000ms

Create account

Tracer waterfall graph representationSample Sequence Trace Flow - Create account

Distributed Tracing - Semantics

S1 - create account
S1 - validate
S1 - call & wait for auth
S1 - prepare data
S1 - call & wait for storage
S1 - create http response
S2 - authenticate
S3 - storage write
S3 - prepare insert
S3 - call & wait for DB
S3 - retrieve DB info
S4 - write in DB
S5 - audit entry

S1

S2

S3

S4

S5

Spans

Context Propagation Between Services

App1 App2

CREATE

Normalized B3 headers

x-b3-parentspanid:
4f4e72885d783096
x-b3-sampled: 1
x-b3-spanid: db0bafcdd869928c
x-b3-traceid: 1822295613448ef1

Trace Collection Pipeline

Spans from App1 & App2 are sent
independently. As long as they share the same
traceId, Tracer backend will be able to group
them & create a trace waterfall graph

Tracer backend

Creator of root span (no context yet)
sets the sampling bit based on
sampling policy

Decision to sample will be
propagated and the downstream
system will comply with the initial
decision.

Enabling CUJs with
Distributed Tracing

Synthetic Tests for outside-in visibility

● Deep “outside-in” view providing backend visibility thanks to traces
○ Every Synthetic with 100% sampling

● Real Browser monitoring: Multiple steps using a real browser
● API monitoring
● DNS monitoring
● Ad-hoc feature to trigger test now
● Ability to templatize test to run on all service instances
● Performance and availability from user perspective

Trace Synthetics
Critical User Journey (CUJ), API tests, Real browser tests, multi steps

 Self-service synthetic testing framework

Enable Synthetic Test with Trace

Synthetic Test Execution with Trace

App Auth.

Storage

Audit

DB

Analyze a group of traces of the same transaction to depict a time-series view the average time
spent in each service for the transaction

Transaction Contributors
Understand the performance contribution of all services for a specific transaction

Which service led to perf degradation?

Contributors show how much each underlying service in a Synthetic step contributes to overall
response time on the step

● The visual helps spot the service(s) causing performance degradation of a Kaiju step
● Draws the insight on behalf of the user. Equivalent to

○ opening all traces for that step in a period of two hours (~144 traces)
○ aggregating total duration of each service across all traces
○ comparing the duration to a baseline performance
○ concluding the faulty service causing perf degradation

Contributors

aws.uswest2

 Synthetic
Test

step=4

 Ingress
Gateway Core

Salesforce
App

aws.useast2 aws.useast2

aws.useast2

 Error
 500

72 72

60

12

Flow Map

Flow Maps

● Reduce clicks needed to identify service causing test failures or
performance issues by aggregated traces

On-Demand Tracing

➢ User specific on-demand tracing

➢ Instance based tracing

➢ Long term tracing

