From Dashboards to Defenses: Building Autonomous
Resilience at Scale

This talk explores strategies for building autonomous, self-defending systems that can proactively detect and mitigate issues before they impact users and the business.

From Dashboards to
Defenses

% Growing system demands make traditional dashboards

" ‘.‘ % "/
7 r "‘ S

ll k : BN LB e % Reliability at scale requires moving beyond observation
o8 , ""f 2 6\ Ho ey
s d i ‘ - — into resilience engineering

+ firefighting unsustainable

l I | " Vi % Shift focus: from watching problems — to preventing
§ N a NE
i ' v / and fixing them automatically

'.‘:!:“"' .U‘u&ij
L
ﬁ Y% % Goal: Build self-defending systems that can:
- [' « 8 > Detect issues autonomously
'..93 v 3 0 > Contain problems before they spread

O > Mitigate impact without human intervention
A , 7 < Outcome: Protect both users and the business
535 Mo Py _ proactively

: A "v.. ¥ \\ fi ~ i e ¥

The Reliability Challenge

I3 |

2 a.m. Pager - Fatigue = Dashboards Don't Act Heroic firefighting Mandate: Engineer
and burnout - Only show problems doesn't scale at reliability into the
billions of requests system itself

Constantly being paged

Dashboards that only display gpqineers can save the day To achieve reliable systems

leads to engineer fatigue and metrics without triggering
burnout, impacting overall : o ati : in a crisis, but at billions of at scale, reliability must be
o automated actions are no requests, heroics can'tkeep engineered as a core part of
system reliability. o

enough to maintain

systems reliable the system design, not an
reliability. afterthought.

The Observability Gap

e From Vanity Metrics e New Way: SLO-driven signals tied

Transitioning from metrics that don't drive actionto t0Q user experience

actionable signals that inform decision-making. Focusing on Service Level Objectives (SLOs) and

L using them to derive actionable signals that are
e Humans can't parse millions Of directly linked to user experience.

data points
The sheer volume of data makes it impossible for ® EXample SLlIs:
humans to manually analyze and respond to issues. p95_request_latency, ava"a blllty,

checkout_success_rate

Defining relevant Service Level Indicators (SLls) that
someone looks capture key aspects of the user experience, such as
The traditional approach of collecting all data in the request latency, availability, and conversion rates.

e Old Way: Collect everything, hope

hope that someone will find it useful is ineffective
and leads to information overload.

Production Observability — Proven Patterns

e SLOs & Error Budgets e OpenTelemetry-first
Use SLOs and error budgets to gate release Standardize on metrics, traces, and logs
velocity
« Exemplars
o RED / GOIden / USE Signals Use trace IDs in slow/error metrics for one-click
Implement consistent signals across services debugging

e Golden Dashboards

Maintain one dashboard per service, not
dozens

Metrics, Traces & Logs that Scale

© ©

Metrics: Counters, Tracing: W3C trace Logging: Structured Outcome: Correlated
Gauges, Histograms context, tail/dynamic JSON logs telemetry you can
sampling, service maps trust
Use low-cardinality, base Leverage open standards and Design logs for scalability Achieve a unified view of
unit metrics for scalability intelligent sampling to and security with structured metrics, traces, and logs
capture meaningful traces formats and intelligent to drive reliable
processing decision-making

By designing scalable, correlated telemetry using best practices for metrics, traces, and logs,

you can build a robust observability platform that provides the actionable insights needed to
ensure autonomous resilience.

Change & Client Visibility

)
o

Change-Aware Observability Client-Side Visibility Capacity & Cost Forecasting

annotations to track changes LCP, CLS, crashes, and edge metrics like

cache hit percentage and error rates

Leverage saturation metrics and
team/service cost tags to predict
resource needs and optimize spend

Incorporating observability, client-side visibility, and capacity forecasting allows you to

proactively monitor the health and performance of your systems from both the backend and
the user's perspective.

Detecting Trouble Before It Happens

© O

Static thresholds fail Capacity anomaly Al models for Browser error spikes
detectors forecasting

"Normal" usage patterns are Machine learning models that Leveraging Al and time series Monitoring client-side errors

always shifting, making static learn usage patterns and analysis to forecast spikes in and using them as early
thresholds ineffective for detect deviations, identifying demand or resource usage, warning signals
detecting issues. potential capacity issues enabling proactive mitigation.
CEIA

By combining anomaly detection, Al-driven forecasting, and client-side signals, you

can build a robust system that identifies and addresses issues before they impact
users and the business.

Alerts that Drive Action

<2

New Way: Alerts as
control signals - direct
automated action

)

Multi-burn-rate
alerts: Fast + slow
windows

Old Way: Alert »>
human - mitigation

Alerts in the old way required

In the new approach, alerts Alerts use multiple time

human intervention to

are used as direct triggers for windows

diaghose and mitigate issues. automated mitigation and

remediation actions.

Goal: Page only for
user-impacting issues

The goal is to page humans
only for the most critical,
user-impacting incidents

Tiered Mitigation Strategy

[:

Tier 1: Safe, Reversible Tier 2: Progressive
Implement circuit breakers, throttles, and Utilize more complex mitigation
other mitigation actions that are safe and Strategies like regional traffic shifts and

severe incidents.

%

Tier 3: Notify-only

For complex or novel incidents,
leverage automated runbooks to guide
human intervention rather than
triggering immediate mitigation.

Resilience Design Patterns

e Circuit Breaker e Failover & Load Balancing
Prevent cascading failures by opening the Route traffic around unhealthy nodes or regions
circuit when downstream service is unhealthy to maintain availability

e Bulkhead e CQRS & Saga
Isolate failures in one part of the system from Scale reads/writes independently and manage
impacting other parts distributed transactions reliably

e Retry with Exponential Backoff

Prevent overload by retrying failed requests
with increasing delay between attempts

Delivery Pipelines as a Resilience Engine

Manual gates slow you down and add
risk

Traditional manual review and approval gates
in deployment pipelines introduce delays and
increase the risk of errors.

o Automated CI/CD: Canary =
progressive rollout - auto rollback
Implement a fully automated CI/CD pipeline o\@

with canary deployments, progressive rollouts,
and automatic rollback capabilities to
accelerate releases and improve safety.

Shift Left: Human review moves
post-deployment, not pre

Shift the focus of human review and approval
from pre-deployment to post-deployment,
allowing for faster release cycles while
maintaining oversight.

Outcome: Faster velocity + safer
releases

By leveraging automated CI/CD pipelines,
organizations can achieve a higher release
velocity with improved safety and reliability.

Delivery pipelines should be designed as a resilience engine, empowering teams to

accelerate releases and improve safety through automation, canary deployments, and
post-deployment human review.

Dynamic Rate Limiting

- ©

Static limits fail Adaptive throttling Detect deviations Prevent incidents

Static rate limits fail against Adaptive throttling that learns Automatically detects Helps defend against ~30%
buggy clients or runaway baseline usage patterns per deviations from normal and of major incidents by
jobs client/endpoint contains workloads automatically throttling

Dynamic rate limiting is a key resilience pattern that automatically contains

workloads and prevents incidents by adapting to changing conditions, detecting
anomalies, and throttling proactively.

The Scar Tissue Principle

Every safeguard born Culture: Postmortems Key question: Could this Result: Toil
from a painful incident - automation have been engineered away,
improvements auto-detected/mitigated? failures prevented
Each reliability f -
aUt:;atzir:a\zlatylmepalteur;eer?:ed CUIture Of Iearnlng from Team evaluateS Whether the Continuous|y improving
incidents and using them as issue could have been AUTETEEa o @l

in response to a specific ")
P P Opportunltles proaCtlver detected and manual toil and prevent

issue or outage. . s
9 automatically mitigated. future failures

he Scar Tissue Principle represents the organization's commitment to learning from every incident anc

sing that knowledge to strengthen their automated resilience capabilities, ultimately preventing future
failures and reducing toil.

Building Trust in Automation

Shadow Mode: Suggest Mode: Autonomous Mode: Transparency &
Log-only Recommend action for Act independently reversibility build
human approval with guardrails confidence
Run automated actions in Provide automated Gradually transition to fully L
_ . Provide visibility into
log-only mode to observe recommendations for human autonomous mode with ,
: : . automated actions and
and validate before taking review and approval before safeguards and rollback y ,
: . N ensure the ability to easily
action. executing. capabilities.

reverse them.

Trust is earned, not declared. By gradually building confidence through

transparency, reversibility, and progressive autonomy, you can successfully
transition to self-defending systems.

Business-Driven Resilience

o6

©

Ul Keep-alives JS Error Tracking Business KPIs
Detect degraded user flows Frontend anomaly signals Cart abandonment, revenue dips trigger
early rollbacks

eliability is about protecting both users and the business. By tying reliability metrics to use

experience and key business outcomes, you can ensure that your system defenses are
aligned with real-world impact.

The Blueprint for
Self-Defending Systems

e Metrics - Actionable Signals

Alerts - Closed-Loop Mitigations

Deployments - Autonomous
Pipelines

Limits - Adaptive Safeguards

Firefighting - Proactive Automation

“"Stop watching, start
engineering. Reliability is
achieved through
autonomous resilience.”

Reliability # Pager duty
Reliability = Autonomous resilience
Every incident = automation opportunity

Step-by-step - Build systems that defend
themselves

