
From Dashboards to Defenses: Building Autonomous 
Resilience at Scale
This talk explores strategies for building autonomous, self-defending systems that can proactively detect and mitigate issues before they impact users and the business.



From Dashboards to 
Defenses

❖ Growing system demands make traditional dashboards 
+ firefighting unsustainable

❖ Reliability at scale requires moving beyond observation 
→ into resilience engineering

❖ Shift focus: from watching problems → to preventing 
and fixing them automatically

❖ Goal: Build self-defending systems that can:
➢ Detect issues autonomously
➢ Contain problems before they spread
➢ Mitigate impact without human intervention

❖ Outcome: Protect both users and the business 
proactively



The Reliability Challenge

2 a.m. Pager → Fatigue 
and burnout

Constantly being paged 
leads to engineer fatigue and 

burnout, impacting overall 
system reliability.

Dashboards Don't Act 
→ Only show problems

Dashboards that only display 
metrics without triggering 
automated actions are not 

enough to maintain 
reliability.

Heroic firefighting 
doesn't scale at 

billions of requests

Engineers can save the day 
in a crisis, but at billions of 

requests, heroics canʼt keep 
systems reliable

Mandate: Engineer 
reliability into the 

system itself

To achieve reliable systems 
at scale, reliability must be 

engineered as a core part of 
the system design, not an 

afterthought.

The key challenge is to transition from reactive, human-driven reliability 
processes to proactive, autonomous systems that can defend themselves and 

reduce the burden on engineers.



The Observability Gap

• From Vanity Metrics
Transitioning from metrics that don't drive action to 
actionable signals that inform decision-making.

• Humans can't parse millions of 
data points

The sheer volume of data makes it impossible for 
humans to manually analyze and respond to issues.

• Old Way: Collect everything, hope 
someone looks

The traditional approach of collecting all data in the 
hope that someone will find it useful is ineffective 
and leads to information overload.

• New Way: SLO-driven signals tied 
to user experience

Focusing on Service Level Objectives SLOs and 
using them to derive actionable signals that are 
directly linked to user experience.

• Example SLIs: 
p95_request_latency, availability, 
checkout_success_rate

Defining relevant Service Level Indicators SLIs that 
capture key aspects of the user experience, such as 
request latency, availability, and conversion rates.

4



Production Observability — Proven Patterns

• SLOs & Error Budgets
Use SLOs and error budgets to gate release 
velocity

• RED / Golden / USE Signals
Implement consistent signals across services

• Golden Dashboards
Maintain one dashboard per service, not 
dozens

• OpenTelemetry-first
Standardize on metrics, traces, and logs

• Exemplars
Use trace IDs in slow/error metrics for one-click 
debugging

5



Metrics, Traces & Logs that Scale

Metrics: Counters, 
Gauges, Histograms

Use low-cardinality, base 
unit metrics for scalability

Tracing: W3C trace 
context, tail/dynamic 

sampling, service maps

Leverage open standards and 
intelligent sampling to 

capture meaningful traces

Logging: Structured 
JSON logs

Design logs for scalability 
and security with structured 

formats and intelligent 
processing

Outcome: Correlated 
telemetry you can 

trust

Achieve a unified view of 
metrics, traces, and logs 

to drive reliable 
decision-making

By designing scalable, correlated telemetry using best practices for metrics, traces, and logs, 
you can build a robust observability platform that provides the actionable insights needed to 

ensure autonomous resilience.



Change & Client Visibility

Change-Aware Observability

Capture deploy and feature flag events as 
annotations to track changes

Client-Side Visibility

Monitor user experience metrics like 
LCP, CLS, crashes, and edge metrics like 

cache hit percentage and error rates

Capacity & Cost Forecasting

Leverage saturation metrics and 
team/service cost tags to predict 

resource needs and optimize spend

Incorporating observability, client-side visibility, and capacity forecasting allows you to 
proactively monitor the health and performance of your systems from both the backend and 

the user's perspective.



Detecting Trouble Before It Happens

Static thresholds fail

"Normal" usage patterns are 
always shifting, making static 

thresholds ineffective for 
detecting issues.

Capacity anomaly 
detectors

Machine learning models that 
learn usage patterns and 

detect deviations, identifying 
potential capacity issues 

early.

AI models for 
forecasting

Leveraging AI and time series 
analysis to forecast spikes in 
demand or resource usage, 

enabling proactive mitigation.

Browser error spikes

Monitoring client-side errors 
and using them as early 

warning signals

By combining anomaly detection, AI-driven forecasting, and client-side signals, you 
can build a robust system that identifies and addresses issues before they impact 

users and the business.



Alerts that Drive Action

Old Way: Alert → 
human → mitigation

Alerts in the old way required 
human intervention to 

diagnose and mitigate issues.

New Way: Alerts as 
control signals → direct 

automated action
In the new approach, alerts 

are used as direct triggers for 
automated mitigation and 

remediation actions.

Multi-burn-rate 
alerts: Fast + slow 

windows
Alerts use multiple time 

windows

Goal: Page only for 
user-impacting issues

The goal is to page humans 
only for the most critical, 
user-impacting incidents

By transitioning from human-driven alerts to automated, multi-faceted alerting that triggers direct 
mitigation, organizations can scale their reliability efforts and ensure that engineers are only paged 

for the most severe, user-impacting issues.



Tiered Mitigation Strategy

Tier 1 Safe, Reversible

Implement circuit breakers, throttles, and 
other mitigation actions that are safe and 

can be easily reversed if needed.

Tier 2 Progressive

Utilize more complex mitigation 
strategies like regional traffic shifts and 
human override options to handle more 

severe incidents.

Tier 3 Notify-only

For complex or novel incidents, 
leverage automated runbooks to guide 

human intervention rather than 
triggering immediate mitigation.

By implementing a tiered mitigation strategy, you can cover the 'easy 80%' of incidents 
with safe, automated actions, while reserving human intervention for the 'hard 20%' of 

more complex issues.



Resilience Design Patterns

• Circuit Breaker
Prevent cascading failures by opening the 
circuit when downstream service is unhealthy

• Bulkhead
Isolate failures in one part of the system from 
impacting other parts

• Retry with Exponential Backoff
Prevent overload by retrying failed requests 
with increasing delay between attempts

• Failover & Load Balancing
Route traffic around unhealthy nodes or regions 
to maintain availability

• CQRS & Saga
Scale reads/writes independently and manage 
distributed transactions reliably

11



Delivery Pipelines as a Resilience Engine

Manual gates slow you down and add 
risk
Traditional manual review and approval gates 
in deployment pipelines introduce delays and 
increase the risk of errors.

Automated CI/CD Canary → 
progressive rollout → auto rollback
Implement a fully automated CI/CD pipeline 
with canary deployments, progressive rollouts, 
and automatic rollback capabilities to 
accelerate releases and improve safety.

Shift Left: Human review moves 
post-deployment, not pre
Shift the focus of human review and approval 
from pre-deployment to post-deployment, 
allowing for faster release cycles while 
maintaining oversight.

Outcome: Faster velocity + safer 
releases
By leveraging automated CI/CD pipelines, 
organizations can achieve a higher release 
velocity with improved safety and reliability.

Delivery pipelines should be designed as a resilience engine, empowering teams to 
accelerate releases and improve safety through automation, canary deployments, and 

post-deployment human review.



Dynamic Rate Limiting

Static limits fail

Static rate limits fail against 
buggy clients or runaway 

jobs

Adaptive throttling

Adaptive throttling that learns 
baseline usage patterns per 

client/endpoint

Detect deviations

Automatically detects 
deviations from normal and 

contains workloads

Prevent incidents

Helps defend against 30% 
of major incidents by 

automatically throttling

Dynamic rate limiting is a key resilience pattern that automatically contains 
workloads and prevents incidents by adapting to changing conditions, detecting 

anomalies, and throttling proactively.



The Scar Tissue Principle

Every safeguard born 
from a painful incident

Each reliability feature or 
automation was implemented 

in response to a specific 
issue or outage.

Culture: Postmortems 
→ automation 
improvements

Culture of learning from 
incidents and using them as 

opportunities 

Key question: Could this 
have been 

auto-detected/mitigated?

Team evaluates whether the 
issue could have been 

proactively detected and 
automatically mitigated.

Result: Toil 
engineered away, 
failures prevented

Continuously improving 
automation - eliminate 
manual toil and prevent 

future failures 

The Scar Tissue Principle represents the organization's commitment to learning from every incident and 
using that knowledge to strengthen their automated resilience capabilities, ultimately preventing future 

failures and reducing toil.



Building Trust in Automation

Shadow Mode: 
Log-only

Run automated actions in 
log-only mode to observe 
and validate before taking 

action.

Suggest Mode: 
Recommend action for 

human approval
Provide automated 

recommendations for human 
review and approval before 

executing.

Autonomous Mode: 
Act independently 

with guardrails
Gradually transition to fully 

autonomous mode with 
safeguards and rollback 

capabilities.

Transparency & 
reversibility build 

confidence

Provide visibility into 
automated actions and 

ensure the ability to easily 
reverse them.

Trust is earned, not declared. By gradually building confidence through 
transparency, reversibility, and progressive autonomy, you can successfully 

transition to self-defending systems.



Business-Driven Resilience

UI Keep-alives
Detect degraded user flows 

early

JS Error Tracking
Frontend anomaly signals

Business KPIs
Cart abandonment, revenue dips trigger 

rollbacks

Reliability is about protecting both users and the business. By tying reliability metrics to user 
experience and key business outcomes, you can ensure that your system defenses are 

aligned with real-world impact.



The Blueprint for 
Self-Defending Systems

• Metrics → Actionable Signals

• Alerts → Closed-Loop Mitigations

• Deployments → Autonomous 
Pipelines

• Limits → Adaptive Safeguards

• Firefighting → Proactive Automation



“Stop watching, start 
engineering. Reliability is 

achieved through 
autonomous resilience.ˮ



Reliability ≠ Pager duty

Reliability = Autonomous resilience

Every incident = automation opportunity

Step-by-step → Build systems that defend 
themselves


