
A GenAI Pipeline for Content
Generation with Apache
Airflow
May 30th 2024

Agenda
- Quick introduction: Airflow and Astronomer

- Challenges of GenAI pipelines and how Airflow addresses them

- Key Airflow features used in the demo
- Focus on the latest 2.9 features:

- Advanced Dataset Scheduling
- Dynamic Task Mapping

- Demo: Fine-tune GPT for an RAG pipeline for content generation
https://github.com/astronomer/gen-ai-fine-tune-rag-use-case

GROWTH COMMUNITY

46k+
Slack members

INNOVATION ECOSYSTEM

2800+
contributors

1600+
building blocks

22M+
monthly downloads

Airflow is the open standard for
Workflow Management.

More and more people are using Airflow for ML/AI

Ingestion and ETL/ELT
related to business

operations

0% 25%

Source: 2023 Apache Airflow Survey, n=797

13%

28%
Of Airflow survey
respondents in 2023 said
they use Airflow for at
least one ML/AI related use
case.

50% 100%

90%

68%

28%

Ingestion and ETL/ELT
related to analytics

Training, serving, or
generally manage MLOps

Spinning up and spinning
down infrastructure

Other 3%

75%

The driving force behind Apache Airflow
24x7 worldwide support | Worlds Top Airflow Experts

Driving 100% of
Airflow releases

100%

30K+ Airflow
students in Academy

ecosystem

30K+

Of Airflow code
contributed

55%

18 of the top 25
committers on board,

8 PMC members

18 of 25

Supercharge Airflow
with Astronomer

Start Your 14-Day Free Trial
(no credit card required)

New sign-ups receive $300 in credits and a
complimentary Airflow Fundamentals
Certification Exam (normally $150).

https://qrco.de/bf2ICP

Challenges when creating GenAI pipelines
The prototype works great - but production is a different beast

- API outages and rate limits
- Need to keep training data up to date

- Your data is what sets you apart from competitors!
- Changing tools and APIs - new models coming out every day
- Complex pipeline structures
- Need the ability to determine which data went into training

(compliance!)
- Scalability
- Reliability
- …

Challenges when creating GenAI pipelines
The prototype works great - but production is a different beast

- API outages and rate limits -> Automatic retries
- Need to keep training data up to date -> Airflow already the standard
- Changing tools and APIs -> Airflow is tool agnostic, TaskFlow API
- Complex pipeline structures -> Datasets, dynamic task mapping,

branching
- Need the ability to determine which data went into training

(compliance!) -> Observability + OpenLineage integration
- Scalability -> Pluggable compute
- Reliability -> Battle tested + it is all code: CI/CD and DevOps best

practices

Your data + your orchestration is what sets you apart from competitors!

Key Airflow features for GenAI
These features build a good foundation for best practice GenAI
pipelines

- TaskFlow API
- Automatic retries
- Branching
- Deferrable operators
- Data-driven scheduling using Datasets
- Dynamic task mapping
- Alerts and notifications
- Setup and teardown tasks
- Backfills and reruns

TaskFlow API => Airflow decorators
The pythonic way to write Airflow DAGs

You can mix traditional operators and Airflow decorators!

There are many decorators: @dag, @task.kubernetes,
@task.branch, @task.bash etc… see: https://astronomer.io/docs/learn/airflow-decorators

⇒

https://docs.astronomer.io/learn/airflow-decorators#available-airflow-decorators

Automatic retries in Airflow
Protects pipelines against rate-limits and API failures

You can configure:
- Number of retries
- Delay between retries
- Exponential backoff
- Maximum delay

Ways to configure:
- Airflow config
- default_args in DAGs
- Individual tasks

Details: https://astronomer.io/docs/learn/rerunning-dags#automatically-retry-tasks

Best practice: Always set retries in production, unless a task has a reason not to

Branching in Airflow

Careful with
downstream trigger

rules!

1

2
3

Details: https://astronomer.io/docs/learn/airflow-branch-operator

Deferrable operators

- Deferrable operators can start async processes in the Triggerer component.
- Use case:

- Waiting for a long running process to finish (e.g. model training)
- Waiting for an event to occur in an external system (like a sensor)

- Advantage:
- The worker slot is released = resource use optimization

- Best practice: Use deferrable operators whenever possible for longer tasks.

Details: https://astronomer.io/docs/learn/deferrable-operators

Dataset scheduling

DAG with
producer task

Consumer
DAG +

producer task

Dataset

Next Dataset

Datasets in the Airflow 2.9 UI

Consumer
DAG

Next
DatasetDataset Producer

task

Airflow 2.9

Advanced Dataset scheduling
Airflow 2.9 additions:

- Schedule on logical dataset expressions
- Use AND (&) / OR (|) to create dataset logic

- Schedule on both time and datasets
- DatasetOrTimeSchedule takes a timetable and a dataset

argument

- REST API endpoint to update Datasets
- Use for cross-deployment dependencies

Details: https://astronomer.io/docs/learn/airflow-datasets

Airflow 2.9

- Create a variable number of copies of the same task based on input
at runtime!

- Define parameters that stay the same (.partial()) and parameters
that change in between task instances
(.expand() / .expand_kwargs())

- Best practice:
- Use dynamic tasks when possible over dynamic DAGs
- Customize the map index (Airflow 2.9)

Dynamic Task Mapping

Dynamic Task Mapping

Basic:
- .partial(a=2) → all parameters that stay the same for each

mapped instance
- .expand(b=[0,1]) → the parameter that changes as a list. Naming the

kwarg is mandatory!
- map_index_template → customize the map index displayed in the UI (2.9)

Advanced:
- .expand_kwargs([{“a”:1}])→ map over sets of keyword arguments
- .map(lambda x: x) → transform the output of an upstream task before

mapping over it

Details: https://astronomer.io/docs/learn/dynamic-tasks

Dynamic Task Mapping - Simple example
Airflow 2.9

Dynamic Task mapping custom index

Details: https://astronomer.io/docs/learn/dynamic-tasks

Custom map index (2.9)

Airflow 2.9

Demo repository: Content Generation
https://github.com/astronomer/gen-ai-fine-tune-rag-use-case

Up to date knowledge
about Airflow (Learn)

Vector Database
(Weaviate)

Training examples
of LinkedIn posts about

Airflow

Validation examples
of LinkedIn posts about

Airflow

Verify format +
Make sure fine-tuning will

be in budget

Fine-tune
GPT3.5-turbo

Pick the better
model:

Champion vs
challenger

Streamlit App

Get prompt
Augment with Knowledge

Use better GPT model
Send LI post to DALLE for a

picture

Demo
https://github.com/astronomer/gen-ai-fine-tune-rag-use-case

Supercharge Airflow
with Astronomer

Start Your 14-Day Free Trial
(no credit card required)

New sign-ups receive $300 in credits and a
complimentary Airflow Fundamentals
Certification Exam (normally $150).

https://qrco.de/bf2ICP

Take Home Message:
Your data + your orchestration with Airflow is
what sets you apart from competitors when

creating GenAI applications!

Appendix

Feature focus: Advanced Dataset scheduling (2.9)
Conditional Dataset Scheduling

(Dataset 1 OR Dataset 2) AND (Dataset 3 OR Dataset 4)

Feature focus: Advanced Dataset scheduling (2.9)
Time + Dataset Scheduling

