A GenAl Pipeline for Content
Generation with Apache
Airflow

May 30th 2024

Q
Agenda

Quick introduction: Airflow and Astronomer

Challenges of GenAl pipelines and how Airflow addresses them

Key Airflow features used in the demo
- Focus on the latest 2.9 features:
- Advanced Dataset Scheduling
- Dynamic Task Mapping

Demo: Fine-tune GPT for an RAG pipeline for content generation
https://github.com/astronomer/gen-ai-fine-tune-rag-use-case

Airflow is the open standard for
Workflow Management.

22M+ 2800+

monthly downloads contributors

1600+

building blocks

<L

GROWTH COMMUNITY INNOVATION ECOSYSTEM

More and more people are using Airflow for ML/AI

Ingestion and ETL/ELT
related to analytics

Ingestion and ETL/ELT
related to business
operations

28%
Of Airflow survey

respondents in 2023 said
they use Airflow for at

Training, serving, or
generally manage MLOps

Spinning up and spinning

down infrastructure least one ML/AI related use
case.
Other 3%
0% 25% 50% 75% 100%

Source: 2023 Apache Airflow Survey, n=797
ASTRONOMER

ASTRONOMER

ASTRONOMER

The driving force behind Apache Airflow
24x7 worldwide support | Worlds Top Airflow Experts

100% 55%

Driving 100% of Of Airflow code
Airflow releases contributed

18 of 25 30K+

18 of the top 25 30K+ Airflow
committers on board, students in Academy
8 PMC members ecosystem

Astr

& 4

@ DUD o
prmtccze M e I ML 0ps
(Visibility & Controls " Supercharge Airflow
00 ¢ (&) Permissions Model with Astronomer
Start Your 14-Day Free Trial
\ (no credit card required)

’ Intelligent Infrastructure Management

5%} Worker Autoscaling 0 Elastic Infrastructure @ High Availability

v— Task Optimized @ In-Place Upgrades

ot @ Connection
v= Compute & Rollbacks

@ Management

Developer Productivity

Your Data 5‘3
Ecosystem ¢l

/)

X 3 (2 @

[=] 74t [m]

LFy <
E’-.#ZEEI

New sign-ups receive $300 in credits and a
complimentary Airflow Fundamentals
Certification Exam (normally $150).

https://grco.de/bf2ICP

@

Challenges when creating GenAl pipelines

The prototype works great - but production is a different beast

- APl outages and rate limits
- Need to keep training data up to date
- Your data is what sets you apart from competitors!
- Changing tools and APIs - new models coming out every day
- Complex pipeline structures
- Need the ability to determine which data went into training
(compliance!)
- Scalability
- Reliability

G

Challenges when creating GenAl pipelines

The prototype works great - but production is a different beast

API outages and rate limits -> Automatic retries

Need to keep training data up to date -> Airflow already the standard
Changing tools and APIs -> Airflow is tool agnostic, TaskFlow API
Complex pipeline structures -> Datasets, dynamic task mapping,
branching

Need the ability to determine which data went into training
(compliance!) -> Observability + OpenLineage integration

Scalability -> Pluggable compute

Reliability -> Battle tested + it is all code: CI/CD and DevOps best
practices

Your data + your orchestration is what sets you apart from competitors!

ASTRONDMER

G
Key Airflow features for GenAl

These features build a good foundation for best practice GenAl
pipelines

- TaskFlow API

- Automatic retries

- Branching

- Deferrable operators

- Data-driven scheduling using Datasets
- Dynamic task mapping

- Alerts and naotifications

- Setup and teardown tasks

- Backfills and reruns

(;\ .
TaskFlow API = Airflow decorators
The pythonic way to write Airflow DAGs

from airflow.operators.python import PythonOperator
from airflow.decorators import task

def say_hi_func(name: str = "") —> str:

return f"Hi {name}!" @task

% def say_hi_1(name: str = "") —> str:
return f"Hi {name}!"

say_hi_obj = PythonOperator(
task_id="say_hi_2",
python_callable=say_hi_func,

op_args=["Astra"], say_hi_obj = say_hi_1("Astra")

You can mix traditional operators and Airflow decorators!

There are many decorators: @dag, @task.kubernetes,
@task.branch, @task.bash etc... see: https://astronomer.io/docs/learn/airflow-decorators

https://docs.astronomer.io/learn/airflow-decorators#available-airflow-decorators

@

Automatic retries in Airflow

Protects pipelines against rate-limits and AP failures

You can configure:
- Number of retries
- Delay between retries
- Exponential backoff
- Maximum delay

say_hi_1

up_for_retry

Ways to configure:
- Airflow config
- default_args in DAGs
- Individual tasks

Best practice: Always set retries in production, unless a task has a reason not to

Details: https://astronomer.io/docs/learn/rerunning-dags#automatically-retry-tasks

@

Branching in Airflow

@task.branch
def is_champion() —> str: Careful with
is_champion = # logic to determine if champion exists downstream trigger
if is_champion: rules!
return "champion_exists"
else:

return "no_champion"

is_champion()

1 is_champion - - -

@task branch champion_exists get_champion_accuracy

= s B OBarater start_the_battle task
EmptyOperato
switch_champion
file://include/model_results/challenger/challenger_accuracy.json compare_accuracies s
= Dataset challenger_exists get_challenger_accuracy @task branch
EmptyOperator 3

keep_champion

@task.branch

is_challenger
. no_challenger Empt
EmptyOperatol

Details: https://astronomer.io/docs/learn/airflow-branch-operator

@

Deferrable operators

- Deferrable operators can start async processes in the Triggerer component.
- Use case:

- Waiting for a long running process to finish (e.g. model training)

- Waiting for an event to occur in an external system (like a sensor)
- Advantage:

- The worker slot is released = resource use optimization

- Best practice: Use deferrable operators whenever possible for longer tasks.

Details: https://astronomer.io/docs/learn/deferrable-operators

@

Dataset scheduling

\& Airflow DAGs Cluster Activity Datasets Security~ Browsev Admin~ Docs ~

N

DAG with
producer task

Datasets %g my_etl_dag

Filter datasets with updates in the past:

All Time 30 days 7 days 24 hours 1 hour

Search by DAG ID or Dataset URI S s3://bucket/data.csv Dataset

Consumer
snowflake://my_table/ D AG +
Total Updates: 0 producer taSk

s3://bucket/data.csv
TRARCpoREesD S snowflake://my._table/ Next Dataset

@

Datasets in the Airflow 2.9 Ul

Consumer

DAG

my_ml_dag =2024-04-22, 14:10:22 UTC

A Details ™% Graph

s3

://bucket/data.csv

Dataset

& Gantt

<>Code [§ AuditLog

Producer
task

Airflow 2.9

snowflake://my_table/

=

~ Lataset

Next
Dataset

(n Airflow 2.9
Advanced Dataset scheduling

Airflow 2.9 additions:

- Schedule on logical dataset expressions
- Use AND (&) / OR (|) to create dataset logic

- Schedule on both time and datasets
- DatasetOrTimeSchedule takes a timetable and a dataset
argument

- REST API endpoint to update Datasets
- Use for cross-deployment dependencies

Details: https://astronomer.io/docs/learn/airflow-datasets

G
Dynamic Task Mapping

- Create a variable number of copies of the same task based on input
at runtime!

- Define parameters that stay the same (.partial()) and parameters
that change in between task instances
(.expand() / .expand_kwargs())

- Best practice:
- Use dynamic tasks when possible over dynamic DAGs
- Customize the map index (Airflow 2.9)

Q
Dynamic Task Mapping

Basic:
- .partial(a=2) — all parameters that stay the same for each
mapped instance
- .expand(b=[0,1]) — the parameter that changes as a list. Naming the

kwarg is mandatory!
- map_index_template — customize the map index displayed in the Ul (2.9)

Advanced:
- .expand_kwargs([{*a":1}])— map over sets of keyword arguments
- .map(lambda x: x) — transform the output of an upstream task before

mapping over it

Details: https://astronomer.io/docs/learn/dynamic-tasks

G

44
45
46
47
48
49
50
51
52
23
54
55
56
57

@task

Airflow 2.9

def get_file_paths() -> str:

logic to get file paths. (potentially)

results in differnet number of files each run

return ["folder/filel", "folder/file2"]
@taskKmap_index_template="{{ my custom_map_index }}")
def process_file(Jconstant: int,

logic to process T11ile

create the custom map index

from airflow.operators.python import get_current_context

context = get_current_context()

context ["my_custom_map_index"] = f"Processed {file}|with constant: |{constant}"

58
59
60
61
62

file_paths = get_file_paths()

processed_files = process_filelpartial(constant=42|}expand(file=file_paths)

ASTRONDMER

(n Airflow 2.9
Dynamic Task mapping custom index

Custom map index (2.9)

screenshot_examples ' » 2024-04-22700:00:00 UTC ' process_file []

A Details ™§ Graph [Gantt >Code [AuditLog [] Mapped Tasks & Task Duration

get_file_paths Processed folder/file2 with constant: 42 @ success 00:00:00 2024-04-22, 13:32:43 UTC

process _file []

MAP INDEX ¢ STATE® DURATION START DATE

Processed folder/file1 with constant: 42 @ success 00:00:00 2024-04-22, 13:32:43 UTC
as
ae

Details: https://astronomer.io/docs/learn/dynamic-tasks

@
- Demo repository: Content Generation

https://github.com/astronomer/gen-ai-fine-tune-rag-use-case

Streamlit App
\ Get prompt
Augment with Knowledge
Use better GPT model

Send LI post to DALLE for a
picture

G

ASTRONOMER

Demo

https://github.com/astronomer/gen-ai-fine-tune-rag-use-case

ASTRONOMER

Astr

& 4

@ DUD o
prmtccze M e I ML 0ps
(Visibility & Controls " Supercharge Airflow
00 ¢ (&) Permissions Model with Astronomer
Start Your 14-Day Free Trial
\ (no credit card required)

’ Intelligent Infrastructure Management

5%} Worker Autoscaling 0 Elastic Infrastructure @ High Availability

v— Task Optimized @ In-Place Upgrades

ot @ Connection
v= Compute & Rollbacks

@ Management

Developer Productivity

Your Data 5‘3
Ecosystem ¢l

/)

X 3 (2 @

[=] 74t [m]

LFy <
E’-.#ZEEI

New sign-ups receive $300 in credits and a
complimentary Airflow Fundamentals
Certification Exam (normally $150).

https://grco.de/bf2ICP

Take Home Message:
Your data + your orchestration with Airflow is
what sets you apart from competitors when
creating GenAl applications!

——

Appendix

RRRRRRRRRR

Feature focus: Advanced Dataset scheduling (2.9)

Conditional Dataset Scheduling

O 00 N O

10

12
13

@dag((
start_date=datetime(2024, 3, 1),
schedule=(
(Dataset("dataset1")| | |Dataset("dataset2"))
[&] (Dataset("dataset3™) [[] Dataset("dataset4"))
), # Use () instead of [] to be able to use conditional dataset scheduling!

catchup=False

)
def downstream2_one_in_each_group():

(Dataset 1 OR Dataset 2) AND (Dataset 3 OR Dataset 4)

G
Feature focus: Advanced Dataset scheduling (2.9)
Time + Dataset Scheduling

10 from airflow.timetables.datasets import DatasetOrTimeSchedule
11 from airflow.timetables.trigger import CronTriggerTimetable

55 @dag(

56 dag_display_name="2 Ingest Knowledge Base",

51 start_date=datetime (2024, 4, 1),

58 schedule=DatasetOrTimeSchedule(

59 timetable=CronTriggerTimetable("@ @ x* x x", timezone="UTC"),

60 datasets=reducel

61 lambda x, y: Dataset(x) | Dataset(y), _KNOWLEDGE_BASE_DATASET_URIS
62 o

63)5

64 catchup=False,

ASTRONOMER

