
How to use common Python 
frameworks to test Apache 
Airflow data pipelines



- What is Airflow? Who is Astronomer?
- Why test data pipelines?
- Local development and testing
- CI/CD and testing
- Demo 

Agenda



What is Airflow?
Who is Astronomer?



GROWTH COMMUNITY

42k+
Slack members

INNOVATION ECOSYSTEM

2800+
contributors

1600+
building blocks

12M+
monthly downloads

4

Airflow is the open standard for 
Workflow Management.





Airflow survey:

81% 
Airflow is (very) important 
to our business! (n=806)



Airflow 101

Pipeline in Airflow = DAG 

A DAG contains tasks.

Tasks are defined in Python using operator classes 
and/or decorators.

DAGs run periodically, incrementally, automatically. 

Tasks are idempotent, atomic and modular



Astronomer is the best place
to run Apache Airflow in production.

Free trial of Astro:
astronomer.io/try-astro



Why test data pipelines?



Airflow survey:

81% 
Airflow is (very) important 
to our business! (n=806)



Testing your data pipelines prevents (some of) this!



Airflow is written in Python and Airflow pipelines 
are just Python code. 

All software engineering and DevOps best 
practices apply, including testing and CI/CD!



Local development and 
testing





Install via Homebrew:

Reproducible local Airflow 
environment in Docker.

Easy to spin up.

Built-in testing features.

Local development and testing with the OSS Astro CLI

https://docs.astronomer.io/astro/cli/install-cli



Astro CLI and Airflow CLI testing features

astro dev pytest
Runs all tests in the /tests/ 

directory. Any Python framework!

airflow dags test
(astro dev run dags…)

Executes a single DAGrun.

airflow tasks test
(astro dev run tasks…)

Executes a single task.

astro dev parse
Parses DAGs, ensures there are no 

import errors.

astro dev upgrade-test
Tests the environment against newer 

Airflow/Runtime versions.



With dag.test you can test Airflow DAGs interactively with your favorite Python 
debugging tool. 

Includes:

- Picking an execution date
- Using connections
- Using variables
- Using DAG conf

dag.test()



CI/CD and testing





- PR from the dev branch to the staging branch in your version control tool.
- astro dev pytest as part of CI/CD runs:

- DAG validation tests
- Unit Tests
- Integration Tests

- Only merge to staging if tests pass!

From dev to staging



DAG validation tests test:

- DAG parsing = is this a valid Airflow DAG? 
- Custom DAG rules, for example: 

- constraints on schedules, start_dates or tags
- Only allow specific operators

You can use any Python test framework you like!

DAG validation tests
Airflow specific!



Use unit tests to test custom Python code in:

- Custom hooks and operators
- Functions used in @task decorated tasks

You can use any Python test framework you like!

Unit tests with Airflow
💡For modules from Airflow 

providers unit tests are 
already done!

registry.astronomer.io



Integration tests to test API calls and connections in custom code:

- Custom hooks and operators
- Functions used in @task decorated tasks

You can use any Python test framework you like!

Careful: Can incur cost and take a lot of time, for example with LLM calls.

Integration tests with Airflow





Your CI/CD script should run all tests in your /tests/ folder. Afterwards the code is 
automatically deployed to the staging deployment.

- You can use any CI/CD tool that you like.
- Example scripts are available

Consider having automated creation of your deployment and your infrastructure 
management as part of your CI/CD. (For Astronomer customers: Astro API)

The CD in CI/CD - our code on the way to the ☁





- Recommended: Run your code a few days in your staging deployment as an 
end-to-end test.

- Bundled PRs Staging to Prod.
- As with the Staging PR, tests run again and deployment is automatic.

Code getting promoted to prod



Demo
https://github.com/astronomer/external-talk-demos/tree/2024-conf42-python-airflow-testing-prod



Local testing: 
CLI + 

dag.test()

CI/CD testing
astro dev pytest

DAG validation tests, Unit 
tests, Integration tests



Take Home Message:

Airflow is written in Python and Airflow pipelines 
are just Python code. 

All software engineering and DevOps best 
practices apply, including testing and CI/CD!


