How to use common Python
frameworks to test Apache
Airflow data pipelines

Agenda

- What is Airflow? Who is Astronomer?
- Why test data pipelines?
- Local development and testing
- CI/CD and testing
- Demo

What is Airflow?
Who is Astronomer?

Airflow is the open standard for
Workflow Management.

12M+ 42k+ 2800+

monthly downloads Slack members contributors

1600+

building blocks

<L

GROWTH COMMUNITY INNOVATION ECOSYSTEM

»

K ..

-,..

<)
&

Airflow survey:

- 81%

(o]
~ Airflow is (very) important
to our busines;! (n=806)

e T

Airflow 101

intro_to_airflow_dag (©2024-02-19, 00:00:00 UTC

A Details ™ Graph [Gantt <> Code

add_23
. SUCCess
MyBasicMathOperator

in Airflow =
A contains tasks.

Tasks are defined in Python using operator classes
and/or decorators.

run periodically, incrementally, automatically.

Tasks are idempotent, atomic and modular

dags > @ intro_to_airflow_dag.py > ...
from airflow.decorators import dag, task
from airflow.models.baseoperator import chain
from pendulum import datetime
from include.custom_operators import MyBasicMathOperator

@dag (
start_date=datetime(2024, 1, 1),
schedule="@daily",
catchup=False,

def intro_to_airflow_dag():

@task

def pick_a_number() —> int:
"Return a random number between 1 and 100."
import random

return random.randint(1, 100)

pick_a_number_obj = pick_a_number()

add_23 = MyBasicMathOperator(
task_id="add_23",
first_number=pick_a_number_obj,
second_number=23,
operation="+",

chain(pick_a_number_obj, add_23)

intro_to_airflow_dag()

Free trial of Astro: '
astronomer.io/try-astro

Astronomer is the best place
to run Apache A|rﬂovv in productlon

Why test data pipelines?

-,..

<)
&

Airflow survey:

- 81%

(o]
~ Airflow is (very) important
to our busines;! (n=806)

e T

Testing your data-’p»i'pj‘el,ihe:s prev_e‘h'ts .(So‘me of) this! |

Airflow is written in Python and Airflow pipelines
~are just Python code.
All software engineering and DevOps best
practices apply, including testing and CI/CD!

Local development and
testing

Dev branch

Staging branch

Production branch

[DAG code] [MLartifacts

4
S |

M Local Development

[Webserver] [Scheduler] [Worker]

|

A 4

[DAG code] [ML artifacts]

h 4

[DAG code [ML artifacts

w Staging Deployment

i

Webserver] [Scheduler] [Worker]

|

(A

kﬁ Production Deployment

Webserver] [Scheduler] [Worker]

i

|

Local development and testing with the OSS Astro CLI

Install via Homebrew: [brew install astro |

Reproducible local Airflow
environment in Docker.

0 23:10:45 2024_conf42_python_airflow_testing 9s|astro dev init|
Initializing Astro project

. Pulling Airflow development files from Astro Runtime 10.3.
Easytosplnup. u girc7> evelopme es from Astro Ru e 10.3.0

0 23:11:13 2024_conf42_python_airflow_testing 9s|astro dev start

[build -t 2024-conf-42-python-airflow-testing_ffeaba/airt tow: tatest —f Docke!
Built-in testing features. [+] Building 0.6s (11/11) FINISHED

=> [internal] load build definition from Dockerfile

Airflow Webserver: http://localhost:8080

Postgres Database: localhost:5432/postgres

The default Airflow UI credentials are: admin:admin

The default Postgres DB credentials are: postgres:postgres

https://docs.astronomer.io/astro/cli/install-cli

ASTRONDMER

Astro CLI and Airflow CLI testing features

astro dev parse

Parses DAGs, ensures there are no
import errors.

airflow dags test

(astro dev run dags...)

Executes a single DAGrun.

astro dev pytest

Runs all tests in the /tests/
directory. Any Python framework!

airflow tasks test

(astro dev run tasks...)

Executes a single task.

astro dev upgrade-test

Tests the environment against newer
Airflow/Runtime versions.

ASTRONDMER

dag.test()

With dag.test you can test Airflow DAGs interactively with your favorite Python

debugging tool.
Includes:

- Picking an execution date
76

- Using connections 77
5 5 78

- Using variables 79
5 80

- Using DAG conf 81
82

83

84

85

86

87

if __name__ == "__main__":
conn_path = "connections.yaml"
variables_path = "variables.yaml"

upper_limit = 50
lower_limit = 10

dag_obj.test(
execution_date=datetime(2024, 2, 29),
conn_file_path=conn_path,
variable_file_path=variables_path,
run_conf={"upper_Llimit": upper_limit,

“"lower_limit": lower_limit},

ASTRONOMER

CI/CD and testing

O

Dev branch

Staging branch

Production branch

[DAG code] [MLartifacts

EX

A 4

[DAG code] [ML artifacts]

h 4

[DAG code [ML artifacts

M Local Development]

[Webserver] [Scheduler] [Worker]

i

w Staging Deployment]

Webserver] [Scheduler] [Worker]

(A

Webserver] [Scheduler] [Worker]

i

kﬁ Production Deployment }

From dev to staging

- PR from the dev branch to the staging branch in your version control tool.

- astro dev pytest as part of CI/CD runs:
- DAG validation tests
- Unit Tests
- Integration Tests

- Only merge to staging if tests pass!

B 3 O Some checks haven't completed yet

2 skipped and 1 in progress checks

(&) Q Astronomer Cl - Deploy code (Multiple Branches) [stage-merge (push) Skipped

@ a Astronomer Cl - Deploy code (Multiple Branches) [prod-merge (push) Skipped

+ This branch has no conflicts with the base branch
Merging can be performed automatically.

Merge pull request ~ | You can also open this in GitHub Desktop or view command line instructions.

(O] 6 Astronomer ClI - Deploy code (Multiple Branches) / test-each-push (push) /n progress — This c...

Hide all checks

Details

Details

ASTRONOMER

o Airflow specific!
DAG validation tests

DAG validation tests test:

- DAG parsing = is this a valid Airflow DAG?

- Custom DAG rules, for example:
- constraints on schedules, start_dates or tags
- Only allow specific operators

You can use any Python test framework you like!

57 @pytest.mark.parametrize(

58 "dag_id,dag, fileloc", get_dags(), ids=[x[2] for x in get_dags()]
59)

60 def test_dag_has_catchup_false(dag_id, dag, fileloc):

61 L s

62 test if a DAG has catchup set to False

63 e

64 assert (

65 dag.catchup == False

66), f"{dag_id} in {fileloc} must have catchup set to False."

67 ASTRONDMER

For modules from Airflow
Unit tests with Airflow IR
registry.astronomer.io
Use unit tests to test custom Python code in:

- Custom hooks and operators
- Functions used in @task decorated tasks

You can use any Python test framework you like!

4 class TestMyBasicMathOperator(unittest.TestCase):

5

6 def test_addition(self):

7 operator = MyBasicMathOperator(

8 task_id="basic_math_op", first_number=2, second_number=3, operation="+"
9)

10 result = operator.execute(None)
11 self.assertEqual(result, 5)

ASTRONDMER

Integration tests with Airflow

Integration tests to test API calls and connections in custom code:

- Custom hooks and operators
- Functions used in @task decorated tasks

You can use any Python test framework you like!

Careful: Can incur cost and take a lot of time, for example with LLM calls.

from include.utils import get_random_number_from_api

3 def test_get_random_number_from_api():
1 result = get_random_number_from_api(min=1, max=100, count=1)
assert 1 <= result <= 100

ASTRONDMER

O

[[DAG code] [ML artifacts M Local Development]

- [Webserver] [Scheduler] [Worker]
& ciep

A 4
P DAG code] [MLartifacts] / "[HStaging Deployment]

Dev branch

Staging branch

& ciep
[Webserver] [Scheduler] [Worker]

h 4

. [DAG code [ML artifacts kﬁ Production Deployment
Production branch
[Webserver] [Scheduler] [Worker]

The CD in CI/CD - our code on the way to the @

Your CI/CD script should run all tests in your /tests/ folder. Afterwards the code is
automatically deployed to the staging deployment.

- You can use any CI/CD tool that you like.
- Example scripts are available

Consider having automated creation of your deployment and your infrastructure
management as part of your CI/CD. (For Astronomer customers: Astro API)

®) Dev to staging
Astronomer Cl - Deploy code (Multiple Branches) #10: Pull request #7 closed by TJaniF

5 1 minute ago
@ In progress

O

[[DAG code] [ML artifacts M Local Development]

- [Webserver] [Scheduler] [Worker]
& ciep

A 4

Dev branch

w Staging Deployment]

. [DAG code] [MLartifacts]
Staglng branCh [Webserver] [Scheduler] [Worker]

A

. [DAG code [ML artifacts J kﬁ Production Deployment
Production branch
[Webserver] [Scheduler] [Worker]

Code getting promoted to prod

- Recommended: Run your code a few days in your staging deployment as an

end-to-end test.
- Bundled PRs Staging to Prod.
- As with the Staging PR, tests run again and deployment is automatic.

- TJaniF merged 4 commits into best-practices-prod from best-practices-stage

ASTRONOMER

Demo

https://github.com/astronomer/external-talk-demos/tree/2024-conf42-python-airflow-testing-prod

Local testing:
CLI +

dag.test q
[DAG code] [ML artifacts g O X Local Development

Dev branCh [Webserver] [Scheduler] [Worker]

A 4

[DAG code] [ML artifacts] k Staging Deployment

Staging branCh [Wepserver] [Scheduler] [Worker]

laC

CI/CD testing
astro dev pytest
@'@ DAG validation tests, Unit A

tests, Integration tests

h 4

[DAG code [ML artifacts m Production Deployment

[Wepserver] [Scheduler] [Worker]

Production branch

Take Home Message:

Airflow is written in Python and Airflow pipelines
are just Python code. i

All software engineering and DevOps best
practices apply, including testing and CI/CD!

