Cloud-Native Platform
Engineering: Modernizing Fixed-
Income Index Systems

A comprehensive examination of how platform engineering and cloud-native
technologies transformed a legacy fixed-income index system, delivering substantial

performance improvements and operational benefits in a regulated financial
environment.

By: Tarun Chataraju

Agenda

01 02 03

Legacy System Challenges Modernization Strategy Technical Architecture

Identifying critical pain points in the existing Platform engineering approach and cloud Kubernetes implementation and microservices
fixed-income index infrastructure migration framework design

04 05

Implementation & Results Lessons Learned

Performance improvements, cost reduction, and compliance adherence Key takeaways and actionable recommendations for similar

transformations

Legacy System Challenges

Significant Downtime Data Volume Explosion

Monthly index rebalancing required 12+ hour maintenance windows, 5x increase in fixed-income market data volumes over 3 years
creating critical service disruptions overwhelmed existing processing capabilities

High Latency Limited Scalability

Index calculations requiring 30+ minutes in peak periods, impacting Monolithic architecture constrained horizontal scaling during high-
client SLAs and trading capabilities demand periods

The existing architecture couldn't adapt to market demands for real-time data, faster calculation cycles, and increasing security universe coverage.

Modernization Strategy

Platform Engineering Approach

e Phased migration maintaining zero service disruption
e Infrastructure-as-Code (I1aC) for consistent environments
e Microservices architecture with domain-driven design

e CI/CD pipeline implementation with automated testing

Key Strategic Decisions

e Containerization of all system components using Docker
e Implementation of asynchronous processing workflows
e Distributed caching for frequently accessed market data

e Security and governance controls built into deployment pipelines

Technical Architecture Evolution

Before: Monolithic Application After: Cloud-Native Microservices

e Single codebase with tight coupling e Domain-bounded services
e \Vertical scaling only e Horizontal auto-scaling

e Manual deployment processes e GitOps deployment model
e Limited redundancy e Multi-region redundancy

e Batch-oriented processing e Event-driven architecture

L
1%® Kubernetes

Kubernetes & Airflow

Implementation Kubernetes

Control Plane

Data Ingestion Services

EE] Containerized adapters for multiple data providers with stateless
processing

Calculation Engine

Scalable compute pods with auto-scaling based on workload

Data Persistence

Cloud-native time-series databases optimized for financial data

API Layer

&

RESTful and GraphQL interfaces with built-in compliance controls

Service mesh implementation enables advanced traffic management, observability, and

security policies across all microservices. Airflow orchestrated the workflow end-to-end.

Critical System Components

Request Queuing System

Implemented Apache Kafka for message

brokering, enabling:

Asynchronous processing of calculation
requests

Peak load management without service

degradation
Message persistence for system recovery

Event sourcing for accurate system state

reconstruction

Distributed Caching

Redis cluster implementation providing:

90% reduction in database read

operations

Sub-millisecond access to frequently
used market data

Cross-region data replication

Failure resilience with automatic failover

Container Orchestration

Kubernetes features leveraged:

Horizontal Pod Autoscaler for dynamic

scaling

Custom Resource Definitions for
financial domain objects

Network policies enforcing regulatory

boundaries

StatefulSets for ordered deployment and
scaling

Performance Improvements

Index Calculation Time...
Rebalancing Downtime... -

Daily Market Data... =

Concurrent Calculations =

T T 1
0 200 400 600
Before [After

The modernized architecture delivered an 88% reduction in index calculation time and eliminated scheduled downtime, while supporting 20x more
concurrent calculations.

Migration Approach

Phase 1: Infrastructure Foundation

Established cloud environment with regulatory controls, implemented
laC, and built CI/CD pipelines with security scanning. Deployed
monitoring and logging infrastructure with financial services

compliance controls.

Phase 3: Service Decomposition

Identified domain boundaries and extracted microservices following
the strangler pattern. Containerized services with Kubernetes
manifests and deployed to production with feature flags enabling

gradual cutover.

Phase 2: Data Layer Migration

Migrated historical market data to cloud-native databases,
implemented change data capture systems, and established dual-
write patterns during transition. Created data validation frameworks to

ensure accuracy post-migration.

Phase 4: Full Production Transition

Implemented blue-green deployment for final cutover, executed
comprehensive service verification, and decommissioned legacy

infrastructure after successful parallel operation period.

Organizational Transformation

Platform Team Structure

Established dedicated platform engineering
team serving as an internal service provider
to index development teams. Implemented

SRE practices with error budgets and SLOs.

Developer Experience

Created self-service portal for infrastructure
provisioning, standardized development
environments in containers, and built
comprehensive documentation with

runbooks.

Knowledge Transfer

Conducted immersive training programs on
cloud-native technologies, paired platform
engineers with index developers, and
established internal tech talks and

knowledge sharing sessions.

Key Takeaways

Performance Transformation

Compliance Integration

Cloud-native modernization delivered 8x Regulatory requirements successfully

faster index calculations and eliminated integrated into CI/CD pipelines and

rebalancing downtime, directly improving

infrastructure automation, maintaining
client experience and enabling new product continuous compliance while accelerating

capabilities. deployment frequency.

Next Steps for Platform Evolution

e Machine learning integration for anomaly detection in market data
e Multi-cloud deployment strategy for additional resilience
e Enhanced self-service capabilities for business users

e Extending Airflow DAGs to support streaming workflows like triggering intraday recalculations

Organizational Impact

Platform engineering approach reduced
time-to-market for new indices by 70% while
enabling development teams to focus on
business logic rather than infrastructure

management.

Thank You

