
Cloud-Native Platform 
Engineering: Modernizing Fixed-

Income Index Systems
A comprehensive examination of how platform engineering and cloud-native 

technologies transformed a legacy fixed-income index system, delivering substantial 

performance improvements and operational benefits in a regulated financial 
environment.

By: Tarun Chataraju



Agenda
01

Legacy System Challenges
Identifying critical pain points in the existing 

fixed-income index infrastructure

02

Modernization Strategy
Platform engineering approach and cloud 

migration framework

03

Technical Architecture
Kubernetes implementation and microservices 

design

04

Implementation & Results
Performance improvements, cost reduction, and compliance adherence

05

Lessons Learned
Key takeaways and actionable recommendations for similar 

transformations



Legacy System Challenges

Significant Downtime
Monthly index rebalancing required 12+ hour maintenance windows, 

creating critical service disruptions

Data Volume Explosion
5x increase in fixed-income market data volumes over 3 years 

overwhelmed existing processing capabilities

High Latency
Index calculations requiring 30+ minutes in peak periods, impacting 

client SLAs and trading capabilities

Limited Scalability
Monolithic architecture constrained horizontal scaling during high-

demand periods

The existing architecture couldn't adapt to market demands for real-time data, faster calculation cycles, and increasing security universe coverage.



Modernization Strategy
Platform Engineering Approach

Phased migration maintaining zero service disruption

Infrastructure-as-Code (IaC) for consistent environments

Microservices architecture with domain-driven design

CI/CD pipeline implementation with automated testing

Key Strategic Decisions

Containerization of all system components using Docker

Implementation of asynchronous processing workflows

Distributed caching for frequently accessed market data

Security and governance controls built into deployment pipelines



Technical Architecture Evolution

Before: Monolithic Application

Single codebase with tight coupling

Vertical scaling only

Manual deployment processes

Limited redundancy

Batch-oriented processing

After: Cloud-Native Microservices

Domain-bounded services

Horizontal auto-scaling

GitOps deployment model

Multi-region redundancy

Event-driven architecture



Kubernetes & Airflow 
Implementation

Data Ingestion Services
Containerized adapters for multiple data providers with stateless 
processing

Calculation Engine
Scalable compute pods with auto-scaling based on workload

Data Persistence
Cloud-native time-series databases optimized for financial data

API Layer
RESTful and GraphQL interfaces with built-in compliance controls

Service mesh implementation enables advanced traffic management, observability, and 

security policies across all microservices. Airflow orchestrated the workflow end-to-end.



Critical System Components

Request Queuing System
Implemented Apache Kafka for message 

brokering, enabling:

Asynchronous processing of calculation 

requests

Peak load management without service 

degradation

Message persistence for system recovery

Event sourcing for accurate system state 

reconstruction

Distributed Caching
Redis cluster implementation providing:

90% reduction in database read 

operations

Sub-millisecond access to frequently 
used market data

Cross-region data replication

Failure resilience with automatic failover

Container Orchestration
Kubernetes features leveraged:

Horizontal Pod Autoscaler for dynamic 

scaling

Custom Resource Definitions for 
financial domain objects

Network policies enforcing regulatory 

boundaries

StatefulSets for ordered deployment and 

scaling



Performance Improvements

Index Calculation Time...

Rebalancing Downtime...

Daily Market Data...

Concurrent Calculations

0 200 400 600
Before After

The modernized architecture delivered an 88% reduction in index calculation time and eliminated scheduled downtime, while supporting 20x more 
concurrent calculations.



Migration Approach

Phase 1: Infrastructure Foundation
Established cloud environment with regulatory controls, implemented 

IaC, and built CI/CD pipelines with security scanning. Deployed 

monitoring and logging infrastructure with financial services 

compliance controls.

Phase 2: Data Layer Migration
Migrated historical market data to cloud-native databases, 

implemented change data capture systems, and established dual-

write patterns during transition. Created data validation frameworks to 

ensure accuracy post-migration.

Phase 3: Service Decomposition
Identified domain boundaries and extracted microservices following 
the strangler pattern. Containerized services with Kubernetes 

manifests and deployed to production with feature flags enabling 

gradual cutover.

Phase 4: Full Production Transition
Implemented blue-green deployment for final cutover, executed 

comprehensive service verification, and decommissioned legacy 

infrastructure after successful parallel operation period.



Organizational Transformation

Platform Team Structure
Established dedicated platform engineering 
team serving as an internal service provider 

to index development teams. Implemented 

SRE practices with error budgets and SLOs.

Developer Experience
Created self-service portal for infrastructure 
provisioning, standardized development 

environments in containers, and built 

comprehensive documentation with 

runbooks.

Knowledge Transfer
Conducted immersive training programs on 
cloud-native technologies, paired platform 

engineers with index developers, and 

established internal tech talks and 

knowledge sharing sessions.



Key Takeaways

Performance Transformation
Cloud-native modernization delivered 8x 
faster index calculations and eliminated 

rebalancing downtime, directly improving 

client experience and enabling new product 

capabilities.

Compliance Integration
Regulatory requirements successfully 
integrated into CI/CD pipelines and 

infrastructure automation, maintaining 

continuous compliance while accelerating 

deployment frequency.

Organizational Impact
Platform engineering approach reduced 
time-to-market for new indices by 70% while 

enabling development teams to focus on 

business logic rather than infrastructure 

management.

Next Steps for Platform Evolution

Machine learning integration for anomaly detection in market data

Multi-cloud deployment strategy for additional resilience

Enhanced self-service capabilities for business users

Extending Airflow DAGs to support streaming workflows like triggering intraday recalculations



Thank You


