From Complexity to Clarity:
Our Serverless Journey That
Slashed Costs While
Boosting Developer Velocity

Our journey from traditional cloud services to serverless architecture
delivered measurable impact in costs, incidents, and deployment

frequency.

By: Tarun Kumar Chatterjee



Our Initial Infrastructure
Challenges

Mounting Costs @ Operational Burden
Infrastructure expenses Teams spent excessive time
grew faster than our managing servers. Core
business. Underutilized innovation suffered.

servers drained resources.

Scaling Limitations

Traditional architecture couldn't handle traffic spikes. This caused

customer-facing failures.



Why We Chose Serverless

Strategic Force Multiplier

Not a silver bullet, but a strategic advantage

Focus on Business Logic

Engineers build features, not infrastructure

Elastic Scaling

Automatic adaption to traffic patterns

Pay-Per-Use Model

Only pay for actual compute resources used



Technical Approach: AWS Services

/> =

i
)

AWS Lambda DynamoDB APl Gateway S3

Core compute service for NoSQL database with auto- Managed AP| endpoint Object storage for static

our business logic scaling capabilities creation and management assets and data



Overcoming Initial Resistance

Skepticism

Engineers doubted real-world

serverless benefits

Data-Driven

Metrics proved the business impact

I,

Education

Workshops and POCs demonstrated

practical value

Champions

Early adopters showcased successful

implementations



Implementation Strategy

Identify Components

Break monolith into function-sized pieces

Pilot Projects

g

Start with non-critical workloads

Refactor Applications

Adapt code for stateless execution

Serverless-Specific CI/CD

Build optimized deployment pipelines



Observability Challenges & Solutions

Challenges Solutions

e Complex distributed tracing across multiple functions e Implemented end-to-end correlation IDs for request

e Severely constrained execution context information tracking

e Unpredictable cold start latency impacts e Deployed robust centralized logging with structured data
« Highly variable resource consumption patterns e Created function-specific performance dashboards

e Established dynamic alerting based on statistical

baselines

Our sophisticated monitoring infrastructure now delivers comprehensive visibility into our serverless ecosystem, enabling

proactive issue detection and rapid resolution.



Cost Optimization Strategies

Right-Size Function Resources

Memory allocation directly impacts performance and cost.
We implemented automated testing to find optimal

settings for each function.

Monitor Execution Duration

Our analytics identify functions approaching timeout
thresholds. This prevents costly timeout loops and

execution inefficiencies.

Optimize Cold Starts

We reduced package sizes and implemented provisioned
concurrency for critical paths. This prevented latency

spikes during traffic fluctuations.

Implement Governance

We developed tagging standards and deployment policies.

This prevented serverless sprawl across the organization.



Measurable Results

62%

Cost Reduction

Decreased infrastructure expenses

78%

Fewer Incidents

Reduced operational failures

3.5x

Deployment Frequency

Increased release cadence

94%

Developer Satisfaction

Improved team sentiment



Lessons Learned

& & =

Start Small, Invest in Measure

Ilterate Often Developer Tools Everything

Begin with non-critical Local testing Data drives

workloads. Build environments speed optimization. Track

confidence through adoption. Function costs, performance,

incremental templates standardize and developer

successes. best practices. productivity from day
one.

650

Design for
Serverless

Rethink architectures.
Don't simply lift-and-
shift existing

applications.



Resources & Next Steps

Implementation Frameworks @

Access our serverless templates and architecture patterns
Decision Records
Review our architecture decisions and tradeoffs

Benchmarking Tools

Test performance with our open-source utilities

Community Support


https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/solutions/constructs/
https://aws.amazon.com/architecture/?architecture=serverless
https://www.serverless.com/
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://aws.amazon.com/rds/performance-insights/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Lambda-Functions.html
https://aws.amazon.com/architecture/
https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/architecture/icons/
https://aws.amazon.com/blogs/architecture/
https://aws.amazon.com/architecture/
https://forums.aws.amazon.com/
https://github.com/aws
https://repost.aws/
https://www.reddit.com/r/aws/

Thank you!

Contact Information:

LinkedIn:


https://www.linkedin.com/in/tarun-kumar-chatterjee-605963176/

