Container-Native ML:
Scaling Predictive
Customer Segmentation on
Kubernetes

UJJWALA PRIYA MODEPALLI
Epsilon Data Management
Conf42 Kube Native

| — ’
&
el | .|
v | ==
o
1 :
>
b
2 e
T —
e E
== ||’
e L
T, i
9 a
— y

The Enterprise Analytics

Challenge

Monolithic Limitations

Traditional analytics platforms
struggle with computational
demands of real-time
predictive customer
segmentation at enterprise
scale.

Operational Complexity

Managing diverse ML
workloads requires flexible,
resilient infrastructure that
adapts to varying
computational requirements.

Scaling Bottlenecks

Legacy systems lack horizontal
scalability, creating
performance degradation
during peak processing loads.

.

II:

y/
-’/IIM. Illll"‘.l ding,,

Kubernetes: The Container
Orchestration Solution

Kubernetes transforms machine learning workloads into resilient,
scalable microservices architectures that deliver superior
performance and operational efficiency.

Horizontal Scaling Resource Orchestration
Automatic pod scaling Intelligent workload

maintains optimal response distribution across clusters
times during peak customer ensures efficient utilization of
data processing loads. computational resources.

Fault Tolerance

Automated failover mechanisms enhance system uptime through
distributed computing resilience.

Cloud-Native ML Architecture
Overview

01

Data Ingestion Services

Containerized pipelines handle high-volume customer data with event-driven processing
patterns.

(0%

Feature Engineering

Independent microservices transform raw data into ML-ready features with consistent
validation.

03

Model Training

Distributed training across Kubernetes clusters for gradient boosting, neural networks, and
clustering algorithms.

04

Inference Services

Real-time scoring with low-latency caching through Redis clusters for immediate customer
segmentation.

. .
. » L —_—
- L J
. s
*
 J

Microservices Separation Strategy

The microservices approach enables independent scaling based on workload demands,
optimizing resource allocation across the ML pipeline.

Data Ingestion Layer

@ Handles customer data streams with validation and preprocessing capabilities.

Feature Engineering

@ Transforms raw data into ML features with containerized transformation services.
Model Training
<D Distributed training workloads with automatic resource scaling and GPU scheduling.

Real-time Inference

% Low-latency prediction services for immediate customer segmentation results.

Deployment Management
with Helm

Streamlined Deployment Custom Resource

, Definitions
Helm charts provide templated
deployment configurations for ML-specific orchestration
consistent ML pipeline patterns enable automated
management across lifecycle management for
environments. training jobs and model

deployments.
« \Version control for ML

services e Custom ML operators
« Environment-specific « Resource scheduling
configurations policies

« Rollback capabilities « Automated scaling rules

Event-Driven Processing Architecture

Data Drift Detection

Continuous monitoring identifies
when customer behavior patterns
shift significantly.

Seamless Deployment

Updated models deploy
automatically with zero-downtime
strategies for continuous service.

[

Automatic Triggers

Kubernetes operators
automatically initiate model

retraining workflows when drift is
detected.

Model Retraining

Containerized training pipelines
update segmentation models with
latest customer data.

R
TR SN g
ontainer-base eature »tore \ m‘_’i"

. L AV |
Implementation NW—— LA

f"}
N §
4 3
g -~
i g

é
1

Consistent Data Access Redis Caching Layer
Centralized feature stores ensure Low-latency caching provides
uniform data access across all sub-millisecond feature retrieval
microservices, eliminating data for real-time customer scoring
inconsistencies. applications.

N o
|

07 s 12201 NNNNNNNNNNNN
] A\

Version Management

Feature versioning maintains model reproducibility and enables A/B testing
across segmentation strategies.

' <B4E

I|||| —_lllll

Advanced Kubernetes Patterns

Init Containers

Validate data quality and dependencies before main ML
processing containers start execution.

Sidecar Containers

) Dedicated monitoring containers track ML model performance,
resource usage, and prediction accuracy metrics.

Multi-Container Pods

°€ Tightly-coupled ML components share resources while
maintaining separation of concerns for optimal performance.

Resource Management
Strategies

GPU Schedulin
& Q50/
Advanced scheduling policies optimize GPU /0

allocation for deep learning workloads,

ensuring efficient utilization of expensive GPU Utilization
computational resources. Improved resource
efficiency

Memory Optimization

Large-scale clustering operations benefit
from intelligent memory management, SX
preventing out-of-memory errors during
customer data processing.

Memory Efficiency

Better allocation patterns

Production Performance Improvements

99.9%

Cost Reduction System Uptime
Efficient resource utilization through Automated failover mechanisms
containerization reduces ensure continuous availability of
infrastructure expenses customer segmentation services.

significantly.

40%

Processing Speed

Distributed computing architecture
accelerates customer data analysis
and model training cycles.

Implementation Strategy
Roadmap

1 Phase 1: Containerization

Transform existing ML workflows into containerized microservices
with Docker and Kubernetes deployment.

2 Phase 2: Orchestration

Implement Kubernetes operators for automated ML lifecycle
management and resource optimization.

3 Phase 3: Optimization

Deploy advanced patterns including event-driven processing,
feature stores, and automated scaling policies.

4 Phase 4: Production

Full-scale deployment with monitoring, alerting, and continuous
improvement processes.

Key Takeaways for Platform Engineers

Microservices Architecture

Separate ML pipeline components enable independent scaling and improved maintainability for enterprise analytics
workloads.

Event-Driven Processing

Kubernetes operators automate ML lifecycle management, reducing operational overhead while improving system
reliability.

Resource Optimization

Container-native deployment patterns maximize resource utilization while minimizing infrastructure costs.

Cloud-Native ML: The Future is Now

Container-native ML on Kubernetes transforms enterprise analytics from monolithic bottlenecks into scalable,
resilient microservices that adapt to business demands.

Platform engineers, ML engineers, and DevOps architects now have proven patterns for implementing production-
ready, cloud-native machine learning systems that deliver measurable business value through improved
performance, reduced costs, and enhanced operational efficiency.

Thank You

UJJWALA PRIYA MODEPALLI
Epsilon Data Management
Conf42 Kube Native

