Observability Passport:
Navigating the What,

Where, and When of
Your Frontend App

%*

) Vadim Tsaregorodtsev « ETG

%

Vadim Tsaregorodtsev

Frontend Guild Lead
Transportation Products
FrontOps, DevEx

Something broke

Pick-up place Drop-off location Pick-up date } Time Drop-off date
Airport, train station, or city Airport, train station, or city 19 May, Mon 12:00 22 May, Thu

Driver'sage v 26 -69years i

e

%

How can we really know
that a product works and
works properly?

%*

Three Pillars of Observability

’ Metrics
‘ { Traces

D Logs

In this presentation you learn...

- Monitoring and Observability
- Metrics and their types

- Pure technical metrics

- SLA, SLO, SLI

- Observability Passport

Metrics

Technical

CPU usage
RAM usage
API response time

Business

Conversion
Retention
Revenue

(=) 505

12.55

L]
1511‘!!,;,1‘!"”""""”"'

3.4%

= J L

Hybrid metrics

12.55
Web Vitals _
- FCP \//, @ 50.5% ,J;f;';,!!”"'f"”';”'
- LCP §e=- - R =
- TTFB « L
Error Rate Ak
- 500

- 499

SLA
SLO
SLI

*
S.lcAenen
SLO

SLI
R o

S ervice LevelAg reement
S ervice LevelO bjective

S ervice LevelAg reement
S ervice LevelO bjective
S ervice Level I ndicator

How do these metrics *
help to solve problems?

- Evaluate the current service
level

- Help prioritize tasks

- Help communicate with
business

r Error Budget k/

EB = 100% - 99.(9)%

I : What does Error Budget affect?

m Cndnott Dees vt ke Q Clarocan

Budge\ Budget ~ Avoduat alowation

- Determines priorities . /$754 ——

. . cs . s . " $a5080
- Simplifies decision making M sZE -
- Helps find balance ®

ok = Duricy mestion

Applicstion error houdling
Application error haulling!
@ 1LERAL, 25 G ‘ \ “ \\‘
»vi Ooern Flles | \ ‘ \
- Inciient Response
" Inclient Response = S
Lt e

°°‘c e it

: u’“””“ [TT3 Ll
Caracert one hykoat el
o «JNM:‘ arvat L g e
@ T it ons it
» Tdm e
>
e

CPU

475 ms

450 ms

425 ms

400 ms

375 ms

350 ms

325 ms

300 ms

275 ms

250 ms

225 ms

200 ms

175 ms

150 ms

125 ms

100 ms

75 ms

50 ms

25 ms

0s

Monitoring != Observability

01/22 00:00 01/22 08:00 01/2216:00 01/23 00:00 01/23 08:00 01/2316:00 01/24 00:00 01/24 08:00 01/2416:00 01/25 00:00 01/2508:00 01/2516:00 01/26 00:00 01/26 08:00 07/26 16:00 071/27 00:00 01/27 08:00 01/27 16:00 01/28 00:00 01/28 08:00 01/28 16:00

== process_cpu_seconds_total_rate_5m == process_cpu_seconds_total_rate_Sm == process_cpu_seconds_total_rate_5m

.. Monitorin

Observability

alert

300 ms - e e e e e e e e o o e e o e e e e o Ew oW

275 ms
250 ms
225 ms
200 ms
175 ms
150 ms
125 ms
100 ms

75 ms

50 ms
25 ms

0s
01/22 00:00 01/22 08:00 01/2216:00 01/23 00:00 01/23 08:00 01/2316:00 01/24 00:00 01/24 08:00 01/2416:00 01/25 00:00 01/2508:00 01/2516:00 01/26 00:00 01/26 08:00 07/26 16:00 071/27 00:00 01/27 08:00 01/27 16:00 01/28 00:00 01/28 08:00 01/28 16:00

== process_cpu_seconds_total_rate_5m == process_cpu_seconds_total_rate_Sm == process_cpu_seconds_total_rate_5m

. Monitoring != Observability

475 ms
450 ms
425 ms
400 ms
375 ms
350 ms
325 ms
300 ms
275 ms
250 ms
225 ms
200 ms

175 ms

150 ms
125 ms

100 ms

75 ms ‘fr

50 ms

25 ms

0s
01/22 00:00 01/22 08:008 01/22 16:00 /23 00:00 01/23 08:00 : 01/24 00:00 01/24 08:004, 01/24 16:00 0145 00:00 01/25 08:08 g 01/27 00:00 01/ 08:00 01/27 16:00

== process_cpu_seconds_total_rate_5| ess_cpu_seconds_total_rate_Sm €ss_cpu_seconds_total_rate_5m

/28 00:00 /28 08:00 01/28 16:00

%

How can we really know
that a product works and
works properly?

Confluence

Confluence

What's in my passport?

- Error tracker (Sentry)

How to analyze code?

12.55

- Linting
- Testing -~
- Scanning = =

1
ol

Ih“,h

ud JEFECT O0J0

Bodgeit

Ll Metrics £ Engagements [EZf] ~ ¥ Findings [EEY ~

©® Metadata

D

- Business Criticality High
TE 190 open Findings ¢

Bodgelt

Easy to install - just requires java and a servlet engine, e.g. Tomcat

Self contained (no additional dependencies other than to 2 in the above line)
Easy to change on the fly - all the functionality is implemented in JSPs, so no
Platform Web Open source* No separate db to install and configure - it uses an 'in memory'

80 o

60 .
Lifecycle Construction ST

40

? 1 Origin Third Party Library

0 el -

Critical High Medium Low Info 0
User Records 1,000
CRITICAL HIGH MEDIUM LOW

© Opened since Mon., Aug. 29, 2016 o
Revenue 50,000.00

Product Type Research and Develop

E W B %

© & [B

%

SLO=0

Number of critical vulnerabilities in production. If the
number is greater than 0, nothing new is rolled out.

BB Components L Metrics & Engagements |7} ~ 3¥ Findings - % Endpoints ~ 8le Benchmarks ~

Vulnerability scanners cars-frontend

What's common
In all SLA's?

Identify areas to monitor

Define - what is an error?

Set an error budget

Collect error/metric data
Visualize data in dashboards

Set up alerts as needed

Assign owners and define
response protocols for incidents

What's in my passport?

- Error tracker (Sentry)

- Code scanning + SLA for vulnerabilities
(DefectDojo)

- Basic technical metrics (prom-client)

- Logs (Kibana)

Logs - records of some events

{ time: 08:00, x-request-id: 1}
{ time: 08:01, x-request-id: 2 }
{ time: 08:02, x-request-id: 3 }

Traces - records of all events

&) — o

{..request-id: 1}

{ ..request-id: 2}
Trace
{ ..request-id: 3}

{ ..request-id: 4 }

2 Ul Search Compare System Architecture Monitor

< ‘v railwaycore-web: POST /offers/search

January 30 2025, 16:34:28 3.04s 1 3 1
Ops 760.34ms 1.52s

Service & Operation v > ¥ » Ops 760.34ms
v | railwaycore-web POST /offers/search
N railwaycore-web http://railwaycore.p.ostrovok.ru/offers/search
railwaycore-web POST /offers/search http receive
railwaycore-web https://plutarch.dev.ostrovok.in/v1/contracts
railwaycore-web https://railwayadmin.p.ostrovok.ru/api/v1/contracts/...
railwaycore-web https://currency.ostrovok.in/v1/rates_history
railwaycore-web https://ctproxy-ng.ostrovok.in/v1/get_stations_by_c...
railwaycore-web https://ctproxy-ng.ostrovok.in/v1/get_stations_by_c...
@ railwaycore-web https://api-test.onelya.ru/Railway/V1/Search/Trai...
railwaycore-web POST /offers/search http send

railwaycore-web POST /offers/search http send

Profiles - detailed records

'8 3
P e
c ()N
L\ (J e)

step: warm_up, time: 12ms, mem: 12b,
step: get_data, time: 200ms, mem: 242D,
step: process, time: 137ms, mem: 44b,

Profile

Slowest Transactions Profiles Duration

Slowest transactions that could use some optimization.
e ® p99() ® p95() ® p75()
GET /cars 12415 ~
12s
SLOWEST APP FUNCTIONS TOTAL SELF TIME COUNT
this 23.60s 2304 10s
TLSSocket.getPeerCertificate 19.76s 1855 8s
BaseContext.userld 18.51s 1809
6s
Socket._writeGeneric 17.22s 1640
publish 16.20s 1580 4s
2s
/[cars/ 476s v .
GET /app/oars/api/arders/{idl/voucher 288s v Jan169:00PM Jan189:00PM Jan209:00PM Jan229:00 PM Jan249:00PM Jan269:00PM Jan 28 9:00 PM
TRANSACTION PROJECT LAST SEEN P75() P95() P990 COUNT(Q)
POST /cars/book/[id] cars-frontend Jan 30, 2025 1:05:45 PM UTC 535.28ms 1.95s 4.07s 449
POST /cars/book/*/ cars-frontend Jan 24, 2025 3:25:23 AMUTC 14.14ms 22.18ms 32.90ms 26
POST /cars/ cars-frontend Jan 24, 2025 9:30:54 AM UTC 8.48ms 15.11ms 25.97ms 302

POST /cars cars-frontend Jan 30, 2025 1:43:12 PM UTC 75.42ms 162.64ms 806.16ms 4.5k

What's in my passport?

- Error tracker (Sentry)

- Code scanning + SLA for vulnerabilities
(DefectDojo)

- Basic technical metrics (prom-client)

- Logs (Kibana)

- Profiling (Sentry)

What's in my passport?

- Error tracker (Sentry)

- Code scanning + SLA for vulnerabilities
(DefectDojo)

- Basic technical metrics (prom-client)

- Logs (Kibana)

- Profiling (Sentry)

- Product analytics (Mixpanel)

Jan 21 Jan 22 Jan 23 Jan 24 Jan 25 Jan 26 Jan 27 Jan 28

W London

initiator: user

Insert ID: gpuauzdvuiAbnzkCgxekbdczsEDpifhbghsf
intention: cars_offercard.position

Library Version: 0.18.0

Mixpanel Library: node

Operating System: macO$

etype: booking_form

NET WA Jan 22 Jan 23 Jan 24 Jan 25 Jan 26 Jan 27 Jan 28

What's in my passport?

- Error tracker (Sentry)

- Code scanning + SLA for vulnerabilities
(DefectDojo)

- Basic technical metrics (prom-client)

- Logs (Kibana)

- Profiling (Sentry)

- Product analytics (Mixpanel)

- SLA for availability

- Test coverage

- Swagger

Pages / Transportation Team / Frontend T ® Translate page & Analytics

Observability Passport

Created by Vadim Tcaregorodtcev, last modified just a moment ago

Project Stand v Sentry Logs Metrics

Cars Erontenc] DEV PROD DEV PROD DEV PROD PROD

Description

= Stand - internal domain for frontend project.

Edit Q Viewinline comments ¢¥ Save for later @ Watching < Share

Stats Defect Dojo SLO Error Coverage Swagger v
Budget + v

PROD PROD PROD PROD DEV

= Sentry - logger for issues combined by error name. Shows the number of events for a selected period, and provides a bunch of additional information, such as user data, browser data, stack trace, request, response, and other

related details.

comprehensive overview of trends, usage patterns, and performance over time.

i(h Like Be the first to like this

@ Write a comment...

Logs - aggregates and displays system and application logs, enabling efficient search, filtering, and analysis to quickly identify patterns and troubleshoot issues.
Metrics - collects real-time performance and system indicators (such as response times, error rates, resource usage, etc.) to provide insights into the overall health and efficiency of the application.
Stats - implemented using Zabbix, this component gathers metrics and statistics from containers, presenting aggregated data from logs and performance indicators in the form of graphs and dashboards. It offers a

Defect Dojo - checks dependencies for potential vulnerabilities, rates them by risk, and suggests updated versions to enhance security.

SLO - Service Level Objectives define the target performance and availability standards for the application, providing benchmarks against which the system’s performance is measured.

Error Budget - represents the allowable threshold for errors or downtime relative to the defined SLOs, helping balance system reliability with the pace of new feature development and improvements.
Coverage - indicates the percentage of code covered by automated tests, ensuring reliability and quality by highlighting untested areas that might be prone to defects.

Swagger - provides interactive APl documentation generated directly from source code annotations, allowing developers to easily explore, understand, and test APl endpoints.

No labels ®

