
Vamsi Krishna Reddy Munnangi

Senior Software Engineer

Infrastructure Engineering

Walmart



Cloud-Native Observability: 

Building Visible, Resilient, and 

Scalable Enterprise Systems

Transforming enterprise systems management through advanced 

monitoring and analytics in modern cloud-native architectures.



From Monitoring to Observability

Traditional Monitoring

Focuses on collecting pre-defined metrics with limited context 

and scope.

Creates siloed visibility across disconnected system 

components and teams.

Enables primarily reactive problem identification after issues 

impact users.

Cloud-Native Observability

Provides comprehensive visibility into system state through 

metrics, logs, and traces.

Delivers a unified, correlated view across distributed 

microservices architectures.

Enables proactive issue detection, faster root cause analysis, 

and automated resolution.



Real-World Implementation 

Metrics

40%
Faster Resolution

Reduced incident response time

25%
Resource Efficiency

Improved infrastructure utilization

200ms
Detection Speed

Near real-time anomaly 

identification



Observability Pillars

Metrics

Quantifiable measurements that track system health, performance, and resource 

utilization in real-time

Logs

Timestamped records capturing detailed events, errors, and state 

changes across system components

Traces

End-to-end request paths revealing service dependencies, 

bottlenecks, and latency across distributed systems



Stateless vs. Stateful Services

Stateless Observability

Monitors request throughput, latency distributions, and ephemeral resource utilization across horizontally 

scaled services

Stateful Observability

Tracks data persistence metrics, replication health, consistency levels, and storage 

performance across distributed datastores

Shared Patterns

Implements comprehensive health probes, dependency 

visualization, and automated anomaly detection for both 

service types



Distributed Tracing Implementation

Instrument Service Code

Integrate trace context propagation across all service-to-service 

communications

Configure Intelligent Sampling

Implement strategic sampling to capture both normal and exceptional 

request patterns

Centralize Collection Pipeline

Establish scalable infrastructure to ingest, process and persist distributed 

trace data

Perform Root Cause Analysis

Leverage trace visualization to identify performance bottlenecks and error 

propagation paths



API Gateway Observability

Traffic Insights

• Request volumes and 

patterns

• Service dependencies

• Rate limiting effectiveness

Security Monitoring

• Authentication events

• Authorization failures

• Attack pattern detection

Performance Metrics

• Latency measurements

• Throughput analytics

• Error rate tracking



Observability Pipeline Design

Collection

Capture comprehensive telemetry data 

from services, infrastructure, and 

applications across your distributed 

ecosystem

Processing

Normalize, enrich, and intelligently filter 

data streams to reduce noise while 

preserving critical signals

Storage

Implement tiered storage strategies 

with optimized retention policies 

balancing performance and cost-

efficiency

3

Visualization

Transform complex data into intuitive 

dashboards that enable rapid 

identification of patterns and 

anomalies



High Availability Strategies

Redundant Observability Infrastructure

Deploy collectors and storage in multiple availability zones.

Graceful Degradation

Design systems to function with reduced telemetry.

Local Buffering

Temporarily store metrics when backends are unavailable.

Multi-channel Alerting

Ensure notifications reach teams through diverse paths.



Capacity Planning & Optimization

Collect Historical Patterns

Aggregate comprehensive utilization metrics and performance data across all 

distributed services over extended time periods.

Forecast Future Demand

Leverage machine learning and statistical modeling to identify seasonal patterns, 

growth trajectories, and potential resource bottlenecks.

Optimize Resource Allocation

Implement dynamic scaling policies and infrastructure provisioning based on 

empirical usage data to balance cost efficiency with performance requirements.

Continuous Improvement

Establish feedback loops to regularly compare forecasted projections against 

actual consumption patterns, refining prediction models and allocation 

strategies.



Implementation Roadmap

Foundation Building

Implement basic metrics collection and centralized logging.

Establish meaningful SLIs and SLOs for core services.

Advanced Capabilities

Deploy distributed tracing across service boundaries.

Develop custom dashboards for specific team needs.

Optimization Phase

Implement anomaly detection and predictive analytics.

Create automated remediation for common issues.



Thank you


