
Rust in the Cloud: Building
AWS Applications That Scale
Conf42 Rust 2025

Vamsi Praveen K

Why Rust for AWS?
Performance at scale Memory safety guarantees

Small, efficient binaries Lower cloud costs

Rust vs Other Languages for AWS
Quick comparison focus: Lambda, containers, I/O, ecosystem, developer speed

Language Strengths Limitations

Go fast startup, simple concurrency, smaller

runtime

runtime bigger than Rust

Java mature ecosystem, rich AWS libs heavier cold starts

Node.js quick dev, rich packages single-threaded CPU limits

Python fastest dev, tons of libs slower runtime for CPU tasks

C++ peak perf, manual memory higher complexity

Rust performance plus safety, predictable

latency, small binaries

steeper learning curve

Where Rust Wins Today

Optimized Serverless Performance

Rust's small, efficient binaries and predictable latency make it ideal for AWS

Lambda functions, leading to quicker cold starts and consistent execution.

Enhanced Memory Safety

With Rust, memory-related errors are largely prevented at compile time,

significantly reducing a common source of production bugs and improving

application stability.

Scalable Asynchronous I/O

Leveraging Tokio, Rust applications can efficiently handle asynchronous I/O,

allowing seamless and scalable interaction with AWS services like S3, SQS,

and DynamoDB.

Significant Cost Efficiency
Rust's minimal CPU and memory footprints translate directly into lower

operational costs for cloud resources, making your AWS deployments more

economical.

Robust API Interactions
Strong typing and idiomatic builder patterns in Rust's AWS SDK help prevent

misconfigurations and incorrect API calls, leading to more reliable and

predictable service integrations.

What Rust Can Improve

Longer Compile Times

Compile times can be longer for large projects, potentially slowing down development cycles.

Steeper Learning Curve

The concepts of ownership and lifetimes present a significant initial hurdle for new developers.

Ecosystem Maturity

While growing rapidly, the ecosystem is still catching up in certain domains compared to more established languages.

Lambda Tooling

AWS Lambda tooling is improving, but offers fewer "one-click" templates than Node.js or Python.

Limited Metaprogramming

Rust has more limited dynamic metaprogramming capabilities compared to languages like Python or Node.js.

AWS SDK for Rust

1 Modular service crates (S3, DynamoDB, SQS, Lambda)

2 Shared aws-config

3 Async-first with Tokio

4 Built-in retries, pagination, streaming

Flowing Example – File Ingestion System
User Initiates

Users begin the

process through

system interaction.

S3 Storage

Files are securely

uploaded and stored

in Amazon S3.

Event
Orchestration

S3 upload events are

routed by

EventBridge.

SQS
Notifications

EventBridge

forwards messages

to an SQS queue for

processing.

Lambda Worker

A Lambda function

processes the

messages from the

SQS queue.

DynamoDB
Metadata

Processed metadata

is stored in

DynamoDB for quick

access.

Observability

Comprehensive

monitoring and

logging ensure

system health.

Step 1 – Upload Files to S3

Strongly typed SDK ensures valid requests

Efficient async uploads

// Example Rust S3 upload codeasync fn upload_file(client:

&S3Client, bucket: &str, key: &str, data: Vec) -> Result<()> {

client.put_object() .bucket(bucket) .key(key) .body(data.into())

.send() .await?; Ok(())}

Step 2 – Notifications with SQS

S3

EventBridge

SQS

Rust workers consume events safely

Step 3 – Processing with Lambda

Rapid Cold Starts

<5ms, significantly faster than ~100ms for

Node.js. Rust's small binaries enable near-

instant function execution.

Minimal Memory Footprint

<10MB memory usage, compared to ~50-

100MB for JVM. This leads to lower

operational costs and better resource

utilization.

Predictable Latency

Rust's compile-time memory safety and

efficient runtime contribute to stable and

predictable performance, even under heavy

load.

Step 4 – Store Metadata in DynamoDB

Strongly typed builders for queries

Async operations at scale

// Example DynamoDB queryasync fn store_metadata(client:

&DynamoDbClient, table: &str, id: &str, metadata: &Metadata,)

-> Result<()> { client.put_item() .table_name(table)

.item("id", attr_s(id)) .item("data", attr_m(&metadata))

.send() .await?; Ok(())}

Step 5 – Observability

tracing for spans/logs

Structured logging with context

OpenTelemetry →
CloudWatch

Metrics and distributed tracing

Rich error handling

With anyhow or thiserror

Security & Deployment

IAM least privilege

KMS for encryption

Cross-compile to musl

Multi-stage container builds

Key Takeaways
1

Compile-time Safety

Leads to significantly fewer

runtime bugs.

2

Asynchronous
Operations

Enable high I/O efficiency.

3

Modular SDK

Facilitates easy adoption of

services.

4

Natural Cloud
Patterns

Integrate end-to-end cloud

patterns seamlessly.

Rust + AWS = Scalable, Cost-Efficient,
Reliable
Thank you!

