Rust in the Cloud: Building
AWS Applications That Scale

Conf42 Rust 2025

Vamsi Praveen K

Why Rust for AWS?

Performance at scale Memory safety guarantees

Small, efficient binaries Lower cloud costs

Rust vs Other Languages for AWS

Quick comparison focus: Lambda, containers, 1/0, ecosystem, developer speed

Language

Go

Java
Node.js
Python
C+

Rust

Strengths

fast startup, simple concurrency, smaller
runtime

mature ecosystem, rich AWS libs
quick dev, rich packages

fastest dev, tons of libs

peak perf, manual memory

performance plus safety, predictable
latency, small binaries

Limitations

runtime bigger than Rust

heavier cold starts
single-threaded CPU limits
slower runtime for CPU tasks
higher complexity

steeper learning curve

Where Rust Wins Today

Optimized Serverless Performance Enhanced Memory Safety Scalable Asynchronous I/O
Rust's small, efficient binaries and predictable latency make it ideal for AWS ~ With Rust, memory-related errors are largely prevented at compile time, Leveraging Tokio, Rust applications can efficiently handle asynchronous I/0,
Lambda functions, leading to quicker cold starts and consistent execution. significantly reducing a common source of production bugs and improving allowing seamless and scalable interaction with AWS services like S3, SQS,
application stability. and DynamoDB.
Significant Cost Efficiency Robust API Interactions
Rust's minimal CPU and memory footprints translate directly into lower Strong typing and idiomatic builder patterns in Rust's AWS SDK help prevent

operational costs for cloud resources, making your AWS deployments more misconfigurations and incorrect API calls, leading to more reliable and
economical. predictable service integrations.

What Rust Can Improve

Longer Compile Times

Compile times can be longer for large projects, potentially slowing down development cycles.

Steeper Learning Curve

The concepts of ownership and lifetimes present a significant initial hurdle for new developers.

Ecosystem Maturity

While growing rapidly, the ecosystem is still catching up in certain domains compared to more established languages.

Lambda Tooling

AWS Lambda tooling is improving, but offers fewer "one-click" templates than Node.js or Python.

Limited Metaprogramming

Rust has more limited dynamic metaprogramming capabilities compared to languages like Python or Node.js.

AWS SDK for Rust

Modular service crates (53, DynamoDB, SQS, Lambda)

1
Shared aws-config
2
3 Async-first with Tokio

Built-in retries, pagination, streaming

User Initiates

Users begin the
process through
system interaction.

Lambda Worker

A Lambda function
processes the
messages from the
SQS queue.

S3 Storage

Files are securely
uploaded and stored
in Amazon S3.

DynamoDB
Metadata

Processed metadata
is stored in
DynamoDB for quick
access.

Flowing Example - File Ingestion System

Event
Orchestration

S3 upload events are
routed by
EventBridge.

Observability

Comprehensive
monitoring and
logging ensure
system health.

SQS
Notifications

EventBridge
forwards messages
to an SQS queue for
processing.

Step1 - Upload Files to S3

Strongly typed SDK ensures valid requests

Efficient async uploads

// Example Rust S3 upload codeasync fn upload_file(client:
&S3Client, bucket: &str, key: &str, data: Vec) -> Result<()> {
client.put_object() .bucket(bucket) .key(key) .body(data.into())
.send() .await?; Ok(())}

Step 2 - Notifications with SQS

S3
EventBridge
SQS

Rust workers consume events safely

Step 3 - Processing with Lambda

Rapid Cold Starts Minimal Memory Footprint

<sms, significantly faster than ~10oms for <10MB memory usage, compared to ~50-

Node.js. Rust's small binaries enable near- 100MB for JVM. This leads to lower

instant function execution. operational costs and better resource
utilization.

Predictable Latency

Rust's compile-time memory safety and
efficient runtime contribute to stable and
predictable performance, even under heavy
load.

Step 4 - Store Metadata in DynamoDB

Strongly typed builders for queries

Async operations at scale

// Example DynamoDB queryasync fn store_metadata(client:
&DynamoDbClient, table: &str, id: &str, metadata: &Metadata,)
-> Result<()> { client.put_item() .table_name(table)
Jitem("id", attr_s(id)) .item("data", attr_m(&metadata))
.send() .await?; Ok(())}

Step 5 - Observability

tracing for spans/logs OpenTelemetry —

Structured logging with context CloudWatch

Metrics and distributed tracing

Richerror handling

With anyhow or thiserror

Security & Deployment

IAM least privilege
KMS for encryption
Cross-compile to musl

Multi-stage container builds

Key Takeaways

1 2
Compile-time Safety Asynchronous
Operations

Leads to significantly fewer

runtime bugs. Enable high I/0 efficiency.

Modular SDK

Facilitates easy adoption of
services.

Natural Cloud
Patterns

Integrate end-to-end cloud
patterns seamlessly.

Rust + AWS = Scalable, Cost-Efficient,
Reliable

Thank you!

