
Demystifying 
Modern Data 
Pipeline 
Architecture: From 
Traditional ETL to 
Cloud-Native 
Streaming

The Evolution of Data Engineering in the Cloud Era

Author: Based on research by Vamsi Krishna Pulusu



Presentation 
Agenda

• The Evolution of Data Pipeline Architectures

• Modern Architectural Patterns

• Tool Evolution Landscape

• Critical Design Considerations

• Emerging Trends & Future Directions

• Migration Strategies



The Data 
Engineering 
Revolution

➢ Key Message: From Batch to Real-Time

• Traditional Approach: Scheduled batch 
processing, centralized systems

• Modern Reality: Distributed, real-time, cloud-
native architectures

• Business Driver: Need for immediate insights 
and operational intelligence

• Technical Driver: Scalability, cost efficiency, and 
flexibility requirements



Traditional ETL 
Limitations

➢Why Change Was Inevitable

• Batch Processing Windows: Off-hours 
scheduling limited data availability

• Single Points of Failure: Centralized design with 
limited recovery options

• Rigid Infrastructure: Hardware-based scaling 
with high upfront costs

• Limited Data Types: Struggled with semi-
structured and streaming data

• Vendor Lock-in: Proprietary systems with 
limited flexibility



The Cloud Storage 
Revolution

➢Decoupling Storage from Compute

• Before: Expensive, fixed-capacity data 
warehouses

• After: Unlimited, cost-effective object storage

• Key Benefits:
• Pay-as-you-go pricing model
• Schema-on-read flexibility
• Native redundancy and durability
• Support for all data formats



Modern 
Architectural 
Patterns -
Overview

• Five Key Approaches

• Medallion Architecture (Bronze/Silver/Gold)

• Lambda Architecture (Batch + Stream)

• Kappa Architecture (Stream-First)

• Lakehouse Paradigm (Unified Platform)

• Data Mesh (Domain-Oriented)



Medallion 
Architecture

➢ Bronze → Silver → Gold Data Refinement

• Bronze Layer: Raw data preservation, complete 
source fidelity

• Silver Layer: Standardized, validated, governed 
data

• Gold Layer: Business-ready, purpose-built 
analytics structures

• Benefits: Clear quality boundaries, reproducible 
processing

• Use Case: Organizations with strong governance 
requirements



Lambda vs. Kappa 
Architecture

➢ Two Approaches to Real-Time Processing

❑Lambda Architecture:

• Parallel batch and stream processing paths

• Comprehensive historical analysis + immediate 
insights

• Higher complexity, dual codebase maintenance

❑Kappa Architecture:

• Stream-processing-first approach

• Single codebase, event log as source of truth

• Simpler maintenance, unified processing model



Lakehouse 
Paradigm

➢ Best of Both Worlds

• Combines: Data lake flexibility + data 
warehouse performance

• Key Features:
• ACID transactions on cloud storage
• Schema enforcement with flexibility
• Multi-workload support (BI, ML, streaming)
• Unified governance across all data

• Business Impact: Eliminates data duplication 
and platform fragmentation



Data Mesh -
Domain-Oriented 
Approach

➢Decentralized Data Ownership

• Core Principle: Data as a product owned by 
domain teams

• Key Components:
• Domain-oriented ownership
• Self-serve data platform
• Federated governance
• Data products with clear interfaces

• Benefits: Organizational scalability, domain 
alignment

• Challenge: Requires significant organizational 
change



Tool Evolution 
Timeline

From Proprietary to Open Source to 
Cloud-Native

Era
Primary 
Technologies

Key 
Characteristics

1990s-
2000s

IBM DataStage, 
Informatica, SSIS

Visual interfaces, 
batch-oriented

2010-2015 Hadoop, Early 
Spark

Distributed 
processing, code-
first

2015-2020 Airflow, Prefect, 
Cloud Services

Orchestration, 
serverless 
execution

2020+ Streaming-First, 
ML Integration

Real-time, 
declarative, 
intelligent



Modern Tool 
Categories

➢ Four Key Categories
• Orchestration Frameworks: Apache 

Airflow, Prefect
• Cloud-Native Services: AWS Glue, Azure 

Data Factory, GCP Dataflow
• Streaming Platforms: Apache Kafka, Spark 

Streaming
• Processing Engines: Apache Spark, 

Apache Flink

➢ Selection Criteria: Team skills, operational 
requirements, cost model, integration needs



Critical Design 
Considerations

➢ Five Essential Areas

• Data Governance & Lineage: Track data 
provenance across distributed systems

• Quality Validation: Continuous testing and 
monitoring throughout pipelines

• Performance Optimization: Partitioning, 
indexing, query pattern optimization

• Security & Compliance: Access controls, 
encryption, audit trails

• Integration Challenges: Balancing real-time and 
batch processing needs



Data Governance 
in Distributed 
Systems

➢Maintaining Control at Scale

• Challenge: Visibility across hybrid/multi-cloud 
environments

• Solutions:
• Automated lineage tracking (dataset to 

column level)
• Distributed metadata collection
• Probabilistic lineage for incomplete 

instrumentation

• Business Value: Rapid impact analysis, 
compliance, troubleshooting



Quality Validation 
Framework

➢Continuous Quality Assurance

• Traditional: Periodic, manual assessment

• Modern: Continuous, automated validation

• Validation Dimensions:
• Syntactic correctness (format compliance)
• Semantic validity (business rule alignment)
• Contextual appropriateness (consistency 

checks)

• Implementation: Distributed validation at 
transformation boundaries



Emerging Trends - 
Serverless Data 
Processing

➢ The Next Evolution

• Key Characteristics:
• No infrastructure provisioning
• Dynamic resource allocation
• Consumption-based pricing
• Granular processing components

• Design Impact: Smaller, focused processing 
units vs. monolithic jobs

• Benefits: Cost optimization, automatic scaling, 
operational simplicity



AI/ML Integration

➢Data Pipelines Meet Machine Learning

• Feature Stores: Centralized feature 
management with versioning

• Model-Serving Pipelines: Real-time inference 
integration

• Key Requirements:
• Point-in-time feature accuracy
• Lineage tracking for model reproducibility
• Unified infrastructure for BI and ML 

workloads

• Business Impact: Faster model deployment, 
consistent feature engineering



Data Contracts & 
Schema 
Management

➢ Formal Agreements for Data Exchange

• Purpose: Establish explicit agreements between 
data producers/consumers

• Components:
• Data structure specifications
• Quality characteristics
• Delivery patterns and SLAs

• Benefits: Stability in distributed ecosystems, 
clear expectations

• Implementation: Versioned schema registries 
with compatibility checking



Migration 
Strategies

Practical Approaches to Modernization

Approach Risk Level Timeline Key Success Factors

Pattern-
Based Moderate Medium-

term
Standardized 
modernization approaches

Hybrid 
Execution Low Long-term Effective abstraction layers

Domain-by-
Domain Moderate Medium-

term Clear domain boundaries

Specialized 
Connectors Low Short-term Well-defined integration 

points



Key Takeaways

➢ Essential Insights for Data Leaders

• No Single Architecture: Choose patterns based 
on specific business contexts

• Incremental Migration: Gradual modernization 
minimizes risk

• Governance is Critical: Essential for 
distributed, cloud-native environments

• Real-Time is Standard: Streaming capabilities 
are becoming table stakes

• Organizational Change: Technology 
transformation requires process and people 
changes



Recommendations

➢ Action Items for Organizations

• Assess Current State: Inventory existing data 
architecture and pain points

• Define Target State: Choose architectural 
patterns aligned with business needs

• Start Small: Begin with non-critical domains or 
workloads

• Invest in Governance: Implement lineage 
tracking and quality frameworks early

• Build Skills: Develop cloud-native and streaming 
processing capabilities


	Slide 1: Demystifying Modern Data Pipeline Architecture: From Traditional ETL to Cloud-Native Streaming
	Slide 2: Presentation Agenda
	Slide 3: The Data Engineering Revolution
	Slide 4: Traditional ETL Limitations
	Slide 5: The Cloud Storage Revolution
	Slide 6: Modern Architectural Patterns - Overview
	Slide 7: Medallion Architecture
	Slide 8: Lambda vs. Kappa Architecture
	Slide 9: Lakehouse Paradigm
	Slide 10: Data Mesh - Domain-Oriented Approach
	Slide 11: Tool Evolution Timeline
	Slide 12: Modern Tool Categories
	Slide 13: Critical Design Considerations
	Slide 14: Data Governance in Distributed Systems
	Slide 15: Quality Validation Framework
	Slide 16: Emerging Trends - Serverless Data Processing
	Slide 17: AI/ML Integration
	Slide 18: Data Contracts & Schema Management
	Slide 19: Migration Strategies
	Slide 20: Key Takeaways
	Slide 21: Recommendations

