
Cross-Language Library Design

Lessons from Building JVM Data 
Connectors That Translate to Rust Crate 
Development

A journey through architectural patterns that transcend language boundaries. Insights 

from Capital One's Spark JMS connector project and their application to Rust 

ecosystem development.

By: Venkata Surendra Reddy Appalapuram



Agenda
01

Project Background

Capital One's Spark JMS connector library: goals and challenges

02

Common Design Challenges

Architectural hurdles in library design that transcend language 

boundaries

03

Abstractions & Interfaces

From provider interfaces to Rust traits

04

Error Handling Strategies

JVM patterns and Rust's Result-based approach

05

Testing Methodologies

Comprehensive testing across implementations

06

Documentation & API Design

Creating intuitive, discoverable interfaces



Project Background

Capital One's Spark JMS Connector

Enterprise-grade data connector for Apache Spark

Enables stream processing from messaging systems

Supports multiple JMS providers (ActiveMQ, IBM MQ, Solace)

Critical for real-time data pipelines and fraud detection

Performance-sensitive with strict reliability requirements

The library needed to handle diverse messaging patterns while maintaining consistent 

behavior and error handling across different broker implementations.



Universal Design Challenges

Library design faces similar fundamental challenges across language ecosystems

Abstraction Boundaries

Creating the right interfaces that hide 

implementation details while providing 

sufficient flexibility

Configuration Management

Balancing ease-of-use with the flexibility to 

customize behavior

Error Propagation

Communicating failures clearly while 

preserving context and recovery options

Extensibility

Enabling future enhancements without breaking backward 

compatibility

Performance Constraints

Minimizing overhead while maintaining safety and correctness 

guarantees



From JVM Interfaces to Rust 
Traits
The provider interface pattern we used in the JMS connector has a natural analog in 

Rust's trait system:

JVM Provider Interface

Java interfaces with dependency injection to swap implementations

Rust Trait System

Zero-cost abstractions with compile-time polymorphism



Separation of Concerns
How component isolation patterns transfer between ecosystems

JVM Implementation

Message consumers isolated from 

connection management

Acknowledgment strategies 

separated from message processing

Error handlers decoupled from core 

business logic

Configuration validation separate 

from usage

Used dependency injection and builder 

patterns to compose components

Rust Translation

Module system naturally enforces 

boundaries

Ownership model clarifies 

responsibility for resources

Trait objects for runtime 

polymorphism when needed

Type parameters for compile-time 

polymorphism

Rust's borrow checker enforces clean 

separation and prevents leaky 

abstractions



Error Handling Strategies

JVM Approach: Exceptions

Object-Oriented: Relies on an inheritance hierarchy for runtime 

error representation.

Checked vs. Unchecked: Enforces handling for API errors, while 

allowing programming errors to propagate.

Context & Recovery: Emphasizes detailed messages, stack traces, 

and robust `catch` blocks for recovery.

Performance: Consider implications of frequent exception 

throwing in high-performance contexts.

Rust Translation: Result Enum

Type-Safe: `Result` explicitly encodes success or failure, forcing 

compile-time handling.

Custom Errors: Uses custom error enums with `From` for 

cohesive, composable error types.

Contextual Chaining: Libraries like `anyhow` and `thiserror` 

provide ergonomic context addition.

Pattern Matching: Exhaustive `match` statements ensure all 

error cases are handled, preventing panics.



Comprehensive Testing 
Methodologies

Unit Testing Strategies

Testing individual components in 

isolation:

JVM: Mockito for interface 

mocking

Rust: Mock implementations of 

traits

Integration Testing

Testing across component 

boundaries:

JVM: TestContainers for broker 

instances

Rust: Similar container-based 

testing or feature flags

Property-Based Testing

Testing behavioral invariants:

JVM: QuickTheories or jqwik

Rust: proptest or quickcheck



Configuration Management Patterns

JVM Configuration Approach

Builder pattern with sensible defaults

Immutable configuration objects

Validation at construction time

Hierarchical configuration with overrides

Rust Translation

Builder pattern with Default trait

Type-safe configuration with compile-time validation

const generics for static configuration

Config structs with validation functions

Both approaches emphasize type safety and validation before use, but Rust can push 

more validation to compile time.



Performance Considerations

Different optimization approaches that achieve similar goals

10x
Performance Improvement

Achieved in both ecosystems through careful 

design

0
Runtime Overhead

Target for abstractions in performance-critical 

paths

99.9%
Reliability Target

Required for enterprise data processing 

systems

JVM Optimization Techniques

Batch processing to amortize overhead

Connection pooling and reuse

Careful memory management to reduce GC pressure

JIT-friendly code patterns

Rust Optimization Techniques

Zero-cost abstractions via monomorphization

Explicit memory management with lifetimes

Compile-time evaluation when possible

Fearless concurrency with ownership model



Documentation & API Design
Consistent Naming Conventions

Follow language idioms: camelCase for Java, snake_case for Rust. Establish clear, 

domain-specific terminology that remains consistent throughout the API.

Progressive Disclosure

Simple use cases should be simple to implement. Advanced features available but 

not required for basic usage. Both ecosystems benefit from tiered APIs with 

increasing complexity.

Examples as Documentation

Both Rustdoc and Javadoc support embedded examples. Our JVM connector 

provided example classes; Rust documentation can use doc tests that are 

automatically verified.

Error Documentation

Explicitly document all possible errors and recovery strategies. In Rust, this means 

documenting all Error variants that can be returned from each function.



Key Takeaways

1

Abstraction Principles Are Universal

Good interface design transcends language. Identify the right 

abstraction boundaries regardless of implementation language.

2

Leverage Language Strengths

Rust's ownership model and trait system provide compile-time 

guarantees that required runtime checks in JVM languages.

3

Testing Is Language-Agnostic

Comprehensive testing strategies translate well between 

ecosystems, though implementation details differ.

4

Document Intent, Not Just Implementation

Explaining why a design choice was made is as important as 

documenting how to use an API, regardless of language.



Thank You


