Cross-Language Library Design

Lessons from Building JVM Data
Connectors That Translate to Rust Crate
Development

A journey through architectural patterns that transcend language boundaries. Insights
from Capital One's Spark JMS connector project and their application to Rust
ecosystem development.

By: Venkata Surendra Reddy Appalapuram

Agenda

01

02

Project Background

Capital One's Spark JMS connector library: goals and challenges

03

Common Design Challenges

Architectural hurdles in library design that transcend language
boundaries

04

Abstractions & Interfaces

From provider interfaces to Rust traits

05

Error Handling Strategies

JVM patterns and Rust's Result-based approach

06

Testing Methodologies

Comprehensive testing across implementations

Documentation & API Design

Creating intuitive, discoverable interfaces

Project Background

Capital One's Spark JMS Connector

e Enterprise-grade data connector for Apache Spark
e Enables stream processing from messaging systems
e Supports multiple IMS providers (ActiveMQ, IBM MQ, Solace)

e Critical for real-time data pipelines and fraud detection

. | =ll-
Al ih

_ 0ng . . . ope . -
e Performance-sensitive with strict reliability requirements -\ r u . .Il p—

Kafka RabbitMQ RabbitMQ Redis

The library needed to handle diverse messaging patterns while maintaining consistent LLL Hh J‘ JJ
(l I

behavior and error handling across different broker implementations.

Universal Design Challenges

Library design faces similar fundamental challenges across language ecosystems

Abstraction Boundaries Configuration Management Error Propagation
Creating the right interfaces that hide Balancing ease-of-use with the flexibility to Communicating failures clearly while
implementation details while providing customize behavior

preserving context and recovery options
sufficient flexibility

Extensibility Performance Constraints
Enabling future enhancements without breaking backward Minimizing overhead while maintaining safety and correctness
compatibility guarantees

From IVM Interfaces to Rust
Traits

The provider interface pattern we used in the JMS connector has a natural analog in

Rust's trait system:

JVM Provider Interface

§
= Java interfaces with dependency injection to swap implementations

Rust Trait System

B

Zero-cost abstractions with compile-time polymorphism

Separation of Concerns

How component isolation patterns transfer between ecosystems

IVM Implementation

e Message consumers isolated from

connection management

e Acknowledgment strategies

separated from message processing

e Error handlers decoupled from core

business logic

e Configuration validation separate
from usage

Used dependency injection and builder

patterns to compose components

Rust Translation

e Module system naturally enforces

boundaries

e Ownership model clarifies

responsibility for resources

e Trait objects for runtime

polymorphism when needed

e Type parameters for compile-time
polymorphism

Rust's borrow checker enforces clean
separation and prevents leaky

abstractions

Error Handling Strategies

S

IVM Approach: Exceptions Rust Translation: Result Enum

e Object-Oriented: Relies on an inheritance hierarchy for runtime o Type-Safe: "Result™ explicitly encodes success or failure, forcing
error representation. compile-time handling.

e Checked vs. Unchecked: Enforces handling for API errors, while e Custom Errors: Uses custom error enums with “From " for
allowing programming errors to propagate. cohesive, composable error types.

e Context & Recovery: Emphasizes detailed messages, stack traces, e Contextual Chaining: Libraries like "anyhow" and "thiserror’
and robust “catch’ blocks for recovery. provide ergonomic context addition.

e Performance: Consider implications of frequent exception e Pattern Matching: Exhaustive “'match statements ensure all

throwing in high-performance contexts. error cases are handled, preventing panics.

Veritas

Comprehensive Testing

Methodologies

Unit Testing Strategies

Testing individual components in

isolation:

e JVM: Mockito for interface

mocking

e Rust: Mock implementations of
traits

Property-Based Testing
Testing behavioral invariants:

e IVM: QuickTheories or jgwik

e Rust: proptest or quickcheck

Integration Testing

Testing across component

boundaries:

e |VM: TestContainers for broker
instances

e Rust: Similar container-based

testing or feature flags

Configuration Management Patterns

IVM Configuration Approach

Builder pattern with sensible defaults

Immutable configuration objects

Validation at construction time

Hierarchical configuration with overrides

FUE pE T RS

Rust Translation

Builder pattern with Default trait

Type-safe configuration with compile-time validation

e const generics for static configuration

Config structs with validation functions

Both approaches emphasize type safety and validation before use, but Rust can push

more validation to compile time.

Performance Considerations

Different optimization approaches that achieve similar goals

10x 0 99.9%

Performance Improvement Runtime Overhead Reliability Target
Achieved in both ecosystems through careful Target for abstractions in performance-critical Required for enterprise data processing
design paths systems
IVM Optimization Techniques Rust Optimization Techniques
e Batch processing to amortize overhead e Zero-cost abstractions via monomorphization
e Connection pooling and reuse e Explicit memory management with lifetimes
e Careful memory management to reduce GC pressure e Compile-time evaluation when possible

e J|IT-friendly code patterns e Fearless concurrency with ownership model

Documentation & API Design

e Consistent Naming Conventions

Follow language idioms: camelCase for Java, snake_case for Rust. Establish clear,

domain-specific terminology that remains consistent throughout the API.

e Progressive Disclosure

Simple use cases should be simple to implement. Advanced features available but
not required for basic usage. Both ecosystems benefit from tiered APIs with

increasing complexity.

e Examples as Documentation

Both Rustdoc and Javadoc support embedded examples. Our JVM connector
provided example classes; Rust documentation can use doc tests that are

automatically verified.

e Error Documentation

Explicitly document all possible errors and recovery strategies. In Rust, this means

documenting all Error variants that can be returned from each function.

Key Takeaways

—— —0—

Abstraction Principles Are Universal Leverage Language Strengths

Good interface design transcends language. Identify the right Rust's ownership model and trait system provide compile-time
abstraction boundaries regardless of implementation language. guarantees that required runtime checks in JVM languages.
Testing Is Language-Agnostic Document Intent, Not Just Implementation
Comprehensive testing strategies translate well between Explaining why a design choice was made is as important as

ecosystems, though implementation details differ. documenting how to use an API, regardless of language.

Thank You

