
Logging in the Age of Cost-
Cutting: Smart Strategies to
Reduce Bills
In an era where cloud costs face intense scrutiny, logging has emerged as
one of the biggest cost drivers for engineering organizations. Today, we'll
explore how industry leaders like Uber, Airbnb, and Slack have achieved
dramatic cost reductions in some cases up to 70% without sacrificing their
ability to debug and monitor systems effectively.

By Venkata Madhu Prateek Reddy Kambala, Sr. DevOps
Engineer

The Logging Cost Crisis
70%

Unused Logs
Of logs are never queried

�50K
Monthly Cost

Typical escalation from $10K in just
12 months

�1.2M
Wasted Annually

Airbnb's spend on unused debug
logs

The logging cost crisis is real and growing. Research reveals that 70% of all
logs ingested are never actually queried, meaning organizations are paying
full price for data that provides zero value. This problem is compounded by
microservices architecture, where each service generates its own log
streams.

Why Costs Are Spiraling Out
of Control

Microservices Explosion
Each service generates independent log streams, creating
exponential volume growth

Cloud Vendor Pricing
Per GB ingested plus retention costs create compound financial
impact

Development Practices
Debug logs left enabled in production environments generate
unnecessary data

Lack of Governance
No clear policies on what to log leads to inconsistent and excessive
logging

Strategy 1 - Intelligent Sampling
Uber's Breakthrough
Sampled debug logs at 5%, kept 100%
of errors

Annual savings: $8M (SRECon 2022)

Maintained full error visibility while
dramatically reducing noise

Implementation Approaches
Head-based sampling: Decision
made at log generation

Tail-based sampling: Decision made
after trace completion

Level-based sampling: Different
rates for different log levels

Best Practices
Always preserve ERROR and FATAL
level logs

Sample at 1-10% for DEBUG and
INFO levels

Use consistent sampling across
service boundaries

Strategy 2 - Noise Filtering
Slack's Success Story

Problem: /healthcheck endpoints generated 2TB/month of
useless logs

Solution: Dropped health checks with Fluent Bit filters

Result: 15% cost reduction with zero impact on debugging
capabilities

Common Noise Sources

Health check endpoints (/ping, /health, /status)

Repeated connection timeouts (if not critical)

Successful authentication logs

Internal service-to-service communication

Filtering represents the most straightforward approach to cost reduction4simply don't log what you don't need. The key is
identifying systematic noise sources that can be filtered out at the ingestion layer.

Strategy 3 - Tiered Storage Architecture

Hot Storage (0-7 days)
Elasticsearch for fast querying - $$$

Warm Storage (7-30 days)
S3 Standard for balanced cost/performance - $$

Cold Storage (30+ days)
S3 Glacier for archival needs - $

Shopify implemented this tiered approach and achieved 60% savings on retention costs. This strategy recognizes that log access
patterns change dramatically over time, with the vast majority of queries focusing on recent data.

For compliance or deep investigation needs, older logs remain accessible but at much lower storage costs.

Strategy 4 - Open Source Migration

0

100

200

300

Splunk Grafana Loki

Razorpay's dramatic transformation shows the potential of open source solutions. Their switch from Splunk to Grafana Loki
resulted in an 80% cost reduction, dropping from $250,000 to just $50,000 monthly.

Loki's architecture is particularly cost-effective because it doesn't index log content like traditional solutions, instead storing logs
directly in object storage like S3. However, this strategy requires the highest implementation effort and ongoing operational
overhead.

Real-World Case Study - Uber's CLP Revolution

169:1 Compression Ratio
Unprecedented efficiency

Search Without Decompression
Maintained full capabilities

�10K vs �1.8M Annual Cost
99% cost reduction

Uber faced a challenge with 250,000 Spark jobs daily generating 200TB of logs. Users demanded retention increase from 3 days to
1 month, which would have cost $1.8M annually in traditional storage.

Their Compressed Log Processor solution achieved a remarkable 169:1 compression ratio while maintaining search capabilities
without decompression. This enabled them to extend retention periods by 10x and unlock new analytics capabilities.

Structured Logging Best Practices

Unstructured
Logging
This is an example of unstructured
logging:

2023-04-05 12:34:56 ERROR User
signup failed: email already exists

This log entry provides some
information, but it's difficult to
parse and analyze at scale. There's
no consistent structure or
metadata.

{
 "timestamp": "2023-04-05T12:34:56.789Z",
 "level": "error",
 "message": "User signup failed",
 "details": {
 "email": "user@example.com",
 "error": "email already exists"
 }
}

Structured Logging
In contrast, here's an example of structured logging in JSON format:

The structured log entry includes consistent metadata like timestamp, log level, and
relevant details. This makes it much easier to filter, analyze, and automate logging
processes.

Enables Precise
Filtering

Target specific log types
for optimization

Improves
Compression
Reduces storage

requirements
significantly

Enhances Query
Performance

Find relevant information
faster

Facilitates
Automation

Enables automated
analysis and alerting

Cost Optimization Success Metrics

Success in logging optimization requires comprehensive measurement across financial, operational, and volume metrics. The
key is establishing baselines before implementing changes, then tracking improvements over time.

Financial Metrics
Monthly log ingestion costs

Storage costs by tier

Total cost per GB ingested

Operational Metrics
Query response time

Log availability

Error detection effectiveness

Volume Metrics
Daily log volume trends

Percentage filtered vs. retained

Storage utilization across tiers

Common Pitfalls and How to Avoid Them
Over-Aggressive Filtering
Risk: Losing critical debugging
information

Solution: Start conservatively,
increase filtering gradually

Safeguard: Always preserve
error-level logs

Sampling Bias
Risk: Missing important but
infrequent events

Solution: Use trace-aware
sampling strategies

Safeguard: Implement alert-
triggered full logging

Cold Storage Query
Performance
Risk: Unacceptable query times
for archived data

Solution: Design queries to
minimize cold access

Safeguard: Implement log
rehydration workflows

Action Plan and Call to Action
Immediate Actions (This Week)

Run log volume audit using existing tools

Identify top 5 noisiest log sources

Calculate current monthly logging spend

Set up log volume monitoring dashboards

30-Day Sprint
Implement health check filtering

Deploy debug log sampling (start at 10%)

Design tiered storage architecture

Establish structured logging standards

Strategic Initiatives (3-6 months)
Evaluate open source alternatives

Implement advanced compression techniques

Develop log-based metrics for alerting

Create cost optimization culture and training

Resources

Essential Tools
Datadog Cost Management

Fluent Bit, Logstash, Vector

Grafana Loki, SigNoz, ELK Stack

CLP (open source)

Further Learning
Uber's CLP technical papers

Datadog cost optimization docs

Cloud provider best practices

SRECon and LISA conference talks

Community Resources
OpenTelemetry specifications

CNCF logging projects

Vendor user communities

Internal optimization working groups

