Building Rust-Powered Al for
Telecom: From Reactive to
Predictive Systems

A paradigm shift is occurring in telecommunications as high-performance Al
systems, powered by Rust's safety and speed capabilities, transform network
management from reactive to predictive approaches.

By: Venu Madhav Nadella




Today's Agenda

We'll explore how Rust is revolutionizing Al implementations in telecommunications infrastructure and driving unprecedented performance
improvements.

01 02 03

The Telecom Challenge Why Rust for Telecom Al Real-World Implementations
Current reactive systems vs. predictive Memory safety, performance, and Case studies and algorithms in production
needs concurrency advantages

04 05

Integration Challenges Future Roadmap

Legacy systems, data quality, and adoption barriers Emerging opportunities and next steps



The State of Telecom Operations Today

Current Reactive Systems

« Only 72% fault detection rate across network infrastructure
« 3.7-hour average Mean Time To Repair (MTTR)

« 80% of maintenance outages are planned and preventative
« Customer experience suffers from undetected issues

« Labor-intensive monitoring across 8-12 disparate systems

Traditional NOCs rely on reactive approaches,
addressing problems after they impact service.



Why Rust for Telecom AI Applications?

Memory Safety Without Garbage Collection Fearless Concurrency
Ensures real-time telemetry processing without latency Facilitates parallel processing of billions of data points from
spikes from garbage collection, crucial for identifying critical diverse network elements, eliminating race conditions.

network failure indicators.

Zero-Cost Abstractions Strong Type System
Achieve line-rate telemetry data processing with minimal Enables early detection of integration errors at compile time,
overhead, essential for high-throughput fiber networks. preventing costly failures during critical network events.

Rust uniquely addresses the technical requirements for next-generation telecom Al systems, providing the critical balance of blazing
speed and absolute reliability.



Performance Metrics: Rust vs. Traditional
Implementations

240

160

80+

Fault Detection (%_f_ .
0 Traditi

MTTR (Minutes)
onal Systems

Emergency Dispatches (%) Customer Churn (%)
@ Rust-Powered Al

Rust implementations consistently
outperform traditional systems across all

key performance indicators, with particularly
dramatic improvements in resolution time
and fault detection capabilities.



Rust-Powered Al Algorithms Transforming Telecom

Isolation Forest for Anomaly Detection LSTM Neural Networks for Time Series Prediction

This unsupervised algorithm efficiently detects anomalies in large LSTMs are specialized Recurrent Neural Networks designed for

datasets by isolating them in random trees, ideal for identifying sequential data. They use internal 'gates’' to remember long-term

"few and different" data points. dependencies, overcoming issues like the vanishing gradient
problem.

Applications include real-time detection of unusual traffic,

cyberattacks, faulty equipment, and fraud. It offers high efficiency Used to predict network traffic, forecast resource demands, and

and low false positives, scaling well for high-throughput telecom anticipate equipment failures, LSTM models provide real-time

networks. predictions crucial for dynamic network management and

proactive problem-solving.

Other Al techniques like Reinforcement Learning and CNNs are also transforming telecom. Rust implementations achieve up to 15x faster
inference speeds compared to Python equivalents, critical for real-time network monitoring at scale.



Case Study: Predictive Cell
Tower Maintenance

Continuous Telemetry

Rust collectors process 25TB daily from 5,000+ cell towers

Al Pattern Recognition

Al

LSTM model identifies subtle precursors to equipment failure

Automated Alerting

PAN

Weighted probability matrix triggers maintenance before failures

Result: 60% reduction in unexpected outages, 42% decrease in truck rolls, and
significant improvement in customer satisfaction metrics across a major North

American carrier's network.




Unified Telemetry Platform Architecture

Key Components

« Collection Adapters: Rust-based normalization of data from 8-12 monitoring
SYEICINE

High-Performance Message Bus: Zero-copy message passing for multi-TB
throughput

« Feature Extraction Engine: Real-time signal processing with Rust's SIMD
optimizations

« Prediction Pipeline: Ensemble models running inference with sub-millisecond
latency

- Explainability Layer: Human-readable output mapping predictions to specific
indicators

This architecture processes 1M+ metrics per second while maintaining 99.999%
uptime - reliability levels impossible with garbage-collected languages.




Implementation Challenges

—— 90— —0 ——0—

Legacy System Integration
Building Rust-based FFl bridges to C/C++

infrastructure components while
maintaining memory safety guarantees

Solution: Comprehensive test
harnesses with fuzzing to validate
boundary conditions

Data Quality at Scale

Ensuring prediction quality with
heterogeneous telemetry sources
containing inconsistent timestamps
and missing values

Solution: Rust-implemented statistical
preprocessing with explicit handling of
uncertain data

Overcoming "Black Box"
Resistance

Network engineers reluctant to trust Al
systems without understanding
decision processes

Solution: Explainable Al approach using
rule extraction techniques for
transparent recommendations



Evolution of Network Operations Roles

Traditional NOC Roles Al-Enabled Roles

- Reactive troubleshooting « Model training and supervision

« Manual correlation across systems « Pattern library development

« Rule-based alerting configuration « Predictive maintenance orchestration
« Time-based preventative maintenance « Algorithm performance tuning

« Fixed operational runbooks « Complex fault scenario simulation

Organizations report 15-20% reduction in overall staffing needs while simultaneously increasing service quality metrics - with staff
transitioning to higher-value Al-focused roles.



Implementation Roadmap

Phase 1: Data Foundation Phase 3: Predictive Models
Implement Rust-based telemetry collectors and Train supervised models on historical fault data
establish unified data lake (3-4 months) for specific failure predictions (4-6 months)
| 2 3 4
Phase 2: Anomaly Detection Phase 4: Automated Remediation
Deploy initial unsupervised learning models for Implement closed-loop actions for common
pattern detection and alerting (2-3 months) issues with human approval workflows (3-4

months)

Full implementation typically requires 12-18 months, with ROl measurable within the first 6 months through reduced emergency
maintenance costs.



Key Takeaways

Reliability
Performance Memory safety guarantees prevent costly
: . crashes in critical network infrastructure
Rust delivers the speed needed for real-time O
analysis of billions of telemetry data points =
=]
ROI
o Predictive systems reduce outages by
60% and cut emergency dispatches by
. 30-50%
Workforce !
Transition from reactive to Al-focused roles @39
creates higher-value telecommunications Integration
jobs Rust's FFl capabilities enable seamless

connection with existing telecom systems

The shift from reactive to predictive telecom operations represents not just a technical evolution, but a fundamental transformation in
how we build and maintain critical communications infrastructure.



Thank You



