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 Introduction to Edge Computing
 



• Overview of Edge Computing
⚬ Brings computation and data storage closer to 

data sources.
⚬ Reduces latency and bandwidth usage.
⚬ Used in applications requiring real-time 

processing - IoT, autonomous vehicles and smart 
cities. 

⚬ For example, Netflix uses edge computing to 
cache content closer to users, which reduces 
latency and improves streaming quality.



Edge Computing



• Comparison of Computing



• Importance in Modern Technology
⚬ Supports rapid growth of IoT devices and the 

need for decentralized processing
⚬ Enables faster decision making like healthcare, 

finance and manufacturing.
⚬ Reduces dependency on centralized cloud 

systems, allowing for more resilient and 
responsive systems. 

 



• IoT Devices

• Edge computing is essential for the Internet of Things (IoT), 

devices needing data processing locally to function effectively.

• Example: Smart home devices that adjust settings in real-time 

based on user behavior.

• Autonomous Vehicles

• Self-driving cars rely on edge computing to process vast 

amounts of data from sensors in real-time.

• This enables faster decision-making and enhances safety on the 

roads.

• Healthcare

• Edge computing supports wearable health devices, enabling 

real-time monitoring and quicker responses in emergency 

situations.



•  Challenges in Cloud Security
⚬ Decentralized nature increases attack surface, 

making security a significant concern.
⚬ With distributed networks, data privacy and 

integrity become more challenging.
⚬ Traditional cloud security measures may not be 

sufficient, necessitating new approaches and 
technologies like Rust to enhance security.

 



Introduction to Rust Programming 
Language

 



• Rust is a modern systems programming language that 

prioritizes safety and performance.

• Rust aims to provide memory safety without needing a 

garbage collector.

• Ideal for writing low-level code that is both fast and secure, 

making it a preferred choice for system-level programming.

 



• History and Development

• Rust was developed by Mozilla Research, with the first stable 

release in 2015.

• Designed to address issues of memory safety, concurrency, and 

performance in system programming.

 



• Core Principles

• Safety: Rust emphasizes memory safety without needing a 

garbage collector.

• Concurrency: Rust enables fearless concurrency, allowing safe 

multi-threaded programming.

• Performance: Rust offers performance comparable to C/C++, 

with the benefits of a modern language.

 



• Benefits of Rust in System Programming

• Memory Safety: Rust ensures memory safety through its ownership model, 

preventing common bugs like null pointer dereferencing and buffer overflows.

• Concurrency Safety: Concurrency in Rust is designed to avoid data races, 

making multi-threaded programming safer.

• Zero-cost Abstraction: In Rust higher-level code can be as efficient as lower-

level code, without compromising on safety.

• Error Handling: Rust's robust error handling system, including the `Result` and 

`Option` types, allows for safe and explicit handling of errors, reducing the 

chances of unexpected behavior.



Vulnerabilities reduction 

 



• Adoption in Industry

• Rust has been adopted by tech giants like Microsoft, Amazon, 

and Facebook for various projects.

• Recognized as the "most loved" programming language in Stack 

Overflow surveys for several years.

 



Adoption in Industry

 



Comparison with Other System 
Programming Languages



• Rust vs C++

• Safety: Rust provides memory safety guarantees at 

compile time, while C++ relies on manual memory 

management, leading to potential vulnerabilities.

• Concurrency: Rust's ownership system ensures safe 

concurrency, whereas C++ developers must manually 

handle synchronization, which can lead to errors.

• Performance: Both languages offer similar performance, 

but Rust's safety features reduce the risk of critical bugs in 

production code. 



• Rust vs Go

• Memory Safety: Rust guarantees memory safety without 

garbage collection, while Go uses a garbage collector that 

can introduce latency.

• Concurrency: Go’s goroutines are easier to use for 

concurrency, but Rust provides more control and safety 

with its async/await syntax and ownership model.

• Use Cases: Go is often used for server-side applications, 

while Rust is preferred for system-level programming and 

performance-critical tasks.



The Role of Rust in Edge 
Computing - Enhancing Security 
in Cloud Computing with Rust



• Relevance of Rust in Edge Computing

• Safety and Performance: Rust's focus on safety and 

performance is particularly valuable in edge computing, 

where resources are limited, and security is critical.

• Web Assembly Compilation: The language's ability to 

compile to Web Assembly allows for efficient execution of 

Rust code on edge devices.

• Ecosystem and Tooling: Rust’s growing ecosystem and 

tooling, such as the Tokio async runtime, support the 

development of robust edge applications.



• Lightweight Runtime: Rust's lightweight runtime and ability to 

compile to WebAssembly make it ideal for deploying secure 

applications on resource-constrained edge devices.

• Concurrency and Parallelism: Provides the tools to write 

concurrent and parallel code safely, which is crucial in 

environments where multiple processes need to interact 

securely.

• Secure Ecosystem: Rust's Cargo package manager and 

ecosystem include crates specifically designed for secure 

network communication and encryption.

 



Implementing Rust in Edge Computing 



Implementing Rust in Edge Computing 
Security



• Secure Network Communication

• Rust's type system and ownership model ensure that data 

transmitted over the network is handled safely and securely.

• Example: Using the `rustls` crate for establishing secure TLS 

connections.



• Data Integrity and Encryption

• Rust's strong type system and libraries like `ring` provide tools for 

implementing secure data encryption and integrity checks.

• Example: Encrypting sensitive data before transmitting it across the 

network to ensure confidentiality and integrity.

 



• Lightweight Runtime for Edge Devices

• Rust's efficiency and lightweight runtime make it ideal for edge 

devices, where resources are limited and security is critical.

• Example: Using Rust to develop firmware for IoT devices that require 

secure and reliable operation.

 



Code Examples

• Example 1: Rust's Memory Safety

 



• Example 2: Rust's Concurrency Safety

 



Case Studies And Real-World Applications



• Industry Use Cases

• Dropbox: Adopted Rust to rewrite performance-critical 

components, enhancing security and efficiency in their 

distributed systems.

• Mozilla: Utilized Rust to develop the Servo web engine, focusing 

on memory safety and concurrency, critical for secure and fast 

web applications.

• Cloudflare: Employed Rust for their edge computing platform to 

optimize performance while maintaining high security standards 

in network communications.



• Impact on Security

• Reduced Vulnerabilities : Rust's strict compile-time checks have 

significantly reduced common vulnerabilities like buffer 

overflows and data races in these systems.

• Improved System Robustness : The adoption of Rust has led to 

more resilient systems, capable of handling security threats 

more effectively. 

• Broader Implications : Rust's success in these case studies 

demonstrates its potential to set new standards for secure and 

reliable edge computing in various industries.



Conclusion - Recap and Future 
Perspectives



• Recap of Key Points

• Edge Computing: Importance of processing data closer to the 

source for reduced latency and improved efficiency.

• Rust's Role: How Rust enhances security and performance in 

edge computing through memory safety, concurrency, and 

efficient system programming.

• Real-World Applications: Examples of Rust being used in 

industry, such as Servo, Tock OS, and Cloudflare Workers, to 

build secure and high-performance systems.



• Future of Rust in Edge Computing

• Growing Adoption: As edge computing continues to expand, 

Rust's unique features make it a strong candidate for developing 

secure and efficient edge applications.

• Community and Ecosystem: The Rust community continues to 

grow, with more libraries and tools being developed to support 

edge computing and other applications.

• Innovation and Security: Rust's focus on safety and 

performance will drive innovation in edge computing, helping to 

build the next generation of secure and resilient systems.



• Final Thoughts

• Rust's combination of performance, safety, and ease of use 

makes it an ideal language for edge computing, where security 

and efficiency are paramount.

• The ongoing development and adoption of Rust will likely see it 

playing a central role in the future of edge and cloud computing.
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