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Challenges in Iot Testing 

• Multi-Layered Systems 

• Dissimilar Technologies – Low level 

microcontrollers & high level server 

programming 

• Functionalities spanning across multi 

layers 

• Incompatible protocols between devices 

• Functionalities developed by different 

teams 

• Solution looks simpler due to limited 

interface 

• Not enough code to justify testing 

 

 



Testing Effectiveness 

General Practice 

 

• Organizations use E to E testing at 

System Level 

• Follow the most logical option 

available i.e. assemble the 

system fully and then test 

• This gives a realistic simulation of 

end user experience 

 

Issues they face: 

 

• System cannot simulate all 

situations 

• Building such a system is very 

time consuming and costly 

• Testing is challenging as system 

involves many applications 

working in tandem 

• Late Cycle error detection 

• Delay in Time to Market 

• Verifying responses from all 

applications is difficult 

 

 



Blood Glucose Tracking System 

• Wearable  

• Glucose sensor 

• Insulin injector 

• Smartphone - Middleware 

• healthcare system in Cloud 



Blood Glucose Tracking System Diagram 
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Wider Scenarios 

Blood Sensor is Simulated 

Data Package is selected 

Cloud generates Alerts 

Medical staff responds to Alerts 

Data moves to cloud 

Patient receives Alert / notification 

Managing Injection schedule 

and injecting insulin 



Solution? 

• Isolate Components and test early • Deconstruct the System into 

Layers for More Effective Testing 

 



Deconstructing The System Into Layers 

Primary challenges 

 

• Designing the system in a way 

that it can be conducive to 

deconstructing in smaller blocks 

with well defined interfaces 

• Build Automation around these 

blocks 

 

 

Unit tests vs functional tests? 

 

• Unit test when system is complex 

• Unit tests help finding root cause 

quicker 

• Functional tests less prone to 

breakage, but hard to find system 

bugs 

Recommendation: Use a blended approach for testing IoT 

 

 

 



Deconstructing The System Into Layers 
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Automation Is The Key 

Components 

 

• Blood Sensors 

• Injectors 

• Cloud app 

• Mobile 

 

All are Wireless and interact 

through API 

 

Automate the flow !  

 

And its SIMPLE !! 
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Automating Server Components 
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Isolate Components And Test Early 
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Case: Scan blood to determine Glucose level 

 

 

• Intercept ReadProbe() 

function call  

• Redirect it to a Virtual 

Asset 

• Generate request and 

Simulate Response 
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Things To Remember  

• IoT systems require thinking about software quality in a larger scope. 

 

• IoT solutions, such as our medical device example, are different from 

“normal” systems because an individual feature or function may span 

multiple layers of the solution. 

 

• Delivering a high-quality system requires testing capabilities at every layer: 

the low-level layer in C code, the API testing layer, and the hard-to-access 

back-end part of the solution. 

 

• Consider the cost associated with the system because a design failure far 

outweighs the cost of deploying a testing solution that enables you to isolate 

and test components or API testing or backend testing 
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