
Testing
Strategy for

Embedded System

End to End Testing

WHY DO WE NEED

END TO END TESTING

WHEN WE CAN TEST

EACH ASPECT OF THE

APPLICATION?

End to End Testing

Iot layered Architecture

2 Layered

Architecture

3 Layered

Architecture

7 Layered

Architecture

IoT Layers

Challenges in Iot Testing

• Multi-Layered Systems

• Dissimilar Technologies – Low level

microcontrollers & high level server

programming

• Functionalities spanning across multi

layers

• Incompatible protocols between devices

• Functionalities developed by different

teams

• Solution looks simpler due to limited

interface

• Not enough code to justify testing

Testing Effectiveness

General Practice

• Organizations use E to E testing at

System Level

• Follow the most logical option

available i.e. assemble the

system fully and then test

• This gives a realistic simulation of

end user experience

Issues they face:

• System cannot simulate all

situations

• Building such a system is very

time consuming and costly

• Testing is challenging as system

involves many applications

working in tandem

• Late Cycle error detection

• Delay in Time to Market

• Verifying responses from all

applications is difficult

Blood Glucose Tracking System

• Wearable

• Glucose sensor

• Insulin injector

• Smartphone - Middleware

• healthcare system in Cloud

Blood Glucose Tracking System Diagram

Measurements sent Wirelessly

Measurements
Stored Locally

Middleware Mobile Phone

Data for Interface to monitor important Parameters

Healthcare system

Glucose levels
and other metrics

Comparison with historical data
and analysis, find unwanted
patterns

Warning to user

Alert to
Medical staff

Immediate
Medical help

Wider Scenarios

Blood Sensor is Simulated

Data Package is selected

Cloud generates Alerts

Medical staff responds to Alerts

Data moves to cloud

Patient receives Alert / notification

Managing Injection schedule

and injecting insulin

Solution?

• Isolate Components and test early • Deconstruct the System into

Layers for More Effective Testing

Deconstructing The System Into Layers

Primary challenges

• Designing the system in a way

that it can be conducive to

deconstructing in smaller blocks

with well defined interfaces

• Build Automation around these

blocks

Unit tests vs functional tests?

• Unit test when system is complex

• Unit tests help finding root cause

quicker

• Functional tests less prone to

breakage, but hard to find system

bugs

Recommendation: Use a blended approach for testing IoT

Deconstructing The System Into Layers

API

Wireless Communication Layer

SS1 SSn

Messaging

Protocols
Proprietary

Protocols

MQTT

HTTP

Communication Model

Automation Is The Key

Components

• Blood Sensors

• Injectors

• Cloud app

• Mobile

All are Wireless and interact

through API

Automate the flow !

And its SIMPLE !!

Services

Testing

Solution

TC_1
TC_2

API

MSG: Result <0XAFD7>

Automating Server Components

Services

Testing

Solution

TC_1
TC_2

API

MSG: Injection_Chng (PAYLOAD)

MSG: Blood_SCN Report (0xafd7)
Cloud

Healthcare

System

Medical

Point

Location

System

Isolate Components And Test Early

Services

Testing

Solution

TC_1
TC_2

API

MSG: Result <0XAFD7>

ReadProbe()

STUB/MOCK

ReadProbe()

Test Data

Storage

Case: Scan blood to determine Glucose level

• Intercept ReadProbe()

function call

• Redirect it to a Virtual

Asset

• Generate request and

Simulate Response

Isolate Server Side Components And Test Early

Services

Testing

Solution

TC_1
TC_2

API

MSG: Injection_Chng (PAYLOAD)

MSG: Blood_SCN Report (0xafd7)
Cloud

Healthcare

System

Medical

Point

Location

System

Virtual Asset

Things To Remember

• IoT systems require thinking about software quality in a larger scope.

• IoT solutions, such as our medical device example, are different from

“normal” systems because an individual feature or function may span

multiple layers of the solution.

• Delivering a high-quality system requires testing capabilities at every layer:

the low-level layer in C code, the API testing layer, and the hard-to-access

back-end part of the solution.

• Consider the cost associated with the system because a design failure far

outweighs the cost of deploying a testing solution that enables you to isolate

and test components or API testing or backend testing

About Me

 : vipinqalead

 : @vipin_QA

 : vipin.jain@metacube.com

QUESTIONS ?

