
OPTIMIZING DEPLOYMENT, RESOURCE EFFICIENCY, AND SCALABILITY

HOSTING APPLICATIONS ON VPS
VS DOCKER: KEY DIFFERENCES

AND BEST PRACTICES

PRESENTED BY: VIVEK KUMAR

Abstract

Traditional VPS hosting vs.
Docker’s container-based
approach

Key focus:
Deployment, team productivity,
cost efficiency, scalability

Case study:
Swoo App reduced AWS costs
by 20% after migrating to
Docker

Kubernetes for managing
containers efficiently

Agenda

1. Introduction to VPS and Docker
2. Deployment and Team Productivity
3. Application Management and Stability
4. Resource Efficiency and Cost Optimization
5. What is preferred: Docker or VPS?
6. Case Study: Swoo App Migration
7. Orchestration Tools: Kubernetes
8. Best Practices for Hosting Applications
9. Best Practices for Migrating to Docker

 Introduction to VPS and Docker

VPS (Virtual Private Server)

• A virtualized environment on
a shared physical server

• Provides dedicated resources
(CPU, RAM, storage)

Docker (Containerization)

• Packages applications and
dependencies into lightweight,
portable containers

• Runs consistently across different
environments

Parameter VPS Docker

Isolation Full OS per server Process-level isolation

Resource Usage High (full OS) Lower (shared kernel)

Portability Limited High (runs anywhere)

Deployment Speed Slower (manual) Faster (automated)

Scalability Manual scaling Auto-scaling

Key Differences: VPS vs Docker

Boot Time, Auto Scaling and Cost Optimization

Faster Boot
Time

• Containers with micro or nano
OS boot significantly faster than
VPS or traditional VM

• Lightweight disk images allow
containerized applications to start
in less than one second, vs
VPS partitions taking 3 to 10
seconds to fully initialize

Optimized Resource
Allocation

• Public cloud providers (AWS, Google
Cloud, Azure) integrate Docker and
Kubernetes tools to scale web/mobile
apps dynamically without
over-provisioning hardware

• System administrators can provision
just the right amount of hardware for
app support, reducing costs and
improving efficiency

Elastic Scaling

• Disk images ensure fast
container deployment to
handle millions of users with
personalized experiences

• Manual Environment Setup = TIME-CONSUMING
and ERROR-PRONE

•

• Uses Docker Images for consistent environments
• Faster onboarding for teams
• Integrates with CI/CD pipelines for automation

Deployment and Team Productivity

Docker:

VPS:

Application Management and Scalability

• Manual scaling and load balancing
• Complex management for multiple apps

• Easier scaling with Kubernetes and
Docker Compose

• Centralized app management

VPS:

Docker:

Case Study – Swoo App Migration
OLD ARCHITECTURE

• 85 EC2 instances were needed for Seach,
User, Game and Auth Service

• It was served using API Gateway Kong via
AWS autoscaling

• CPUs and Ram of EC2 was wasted due to
underutilization

Case Study – Swoo App Migration

● The migration of the Swoo app serves as a
compelling case study showcasing the
transformative impact of Docker and Kubernetes.

● Migration to Docker and Kubernetes, reduced the
number of EC2 instances to 67 from 85,

● Led to significant reduction of 20% in AWS costs,
demonstrating the efficiency and cost
effectiveness of containerization and
orchestration technologies.

NEW ARCHITECTURE

Orchestration Tools: Kubernetes

Benefits:

 Efficient resource allocation

Simplifies container management

Open-source platform for managing
containerized applications

Auto-scaling and self-healing

What is more preferred: VPS or Docker?
Key factors in decision making include

❖ Project Management Approach

❖ Microservices Compatibility

❖ Web Traffic Scale

❖ Budget and Development
Capabilities

❖ Licensing Standards

The choice between VPS and container orchestration depends on team workflows,
deployment strategies, and long-term maintainability.

Both VPS and container platforms support web/mobile apps using microservices, but
containers offer better service isolation and scalability

 The infrastructure choice is influenced by:
- Page hits per day, determining server load
- Simultaneous users, affecting real-time performance
- Server and website caching configurations for speed optimization
- Integrated CDN usage for faster content delivery

Teams must consider infrastructure costs, scaling expenses, and the complexity of
managing the chosen solution

Open-source solutions like Docker and Kubernetes reduce vendor lock-in, while
proprietary options may offer better enterprise support

VPS vs Docker Use Cases: Industry Adoption

Both VPS and container hosting can facilitate custom code requirements as well as distributed programming teams. Largely
it depends on the expected or given user traffic base of a website, domain, or mobile app how much total hardware
resources will be required to support operations in production.

Preferred by wide variety of web publishers, ecommerce websites, and multi-domain
developers for their web hosting requirements

Preferred by corporate IT deployments in support of web/mobile applications like
major media companies, finance/banking groups, industrial manufacturers,
government organizations, etc. at scale in data center operations through elastic
cluster web server networks

Best Practices for Hosting Applications

For VPS:
✔ Use configuration management tools (e.g.,
Ansible, Puppet).
✔ Monitor resource usage to avoid
over-provisioning.

For Docker:
✔ Implement multi-stage builds to reduce
Docker image size.
✔ Keep Docker images updated for security.
✔ Implement orchestration tools like
Kubernetes

Best Practices for Migrating to Docker

🚀 Assess and Refactor Microservices - ensure all microservices are container-ready and can support Docker image builds

🔬 Start Small and Iterate - develop a small prototype before full-scale migration to identify potential issues early

🛠 Use Docker Compose for Testing - for multi-container applications, leverage Docker Compose to streamline development
and integration testing

🔄 Integrate with CI/CD Pipelines - automate deployments with Jenkins, GitLab CI/CD, or similar tools to ensure smooth rollouts

📦 Orchestration with Kubernetes - deploy and manage containers at scale using Kubernetes for better load balancing and
service discovery

Best Practices for Migrating to Docker

🎓 Train Your Team - provide hands-on Docker and Kubernetes training to ensure smooth adoption

📊 Implement Monitoring and Logging - use tools like ELK Stack, Prometheus, and Grafana for real-time performance
monitoring and debugging

⚡ Thoroughly Test and Load Test - conduct rigorous functional, integration, and load testing to ensure stability under
high traffic

🌍 Migrate Gradually with a Hybrid Approach - use a phased migration strategy, running containers alongside existing
infrastructure before full transition

Conclusion

Docker offers superior efficiency, scalability, and automation compared

to traditional VPS solutions. When paired with Kubernetes, managing

large-scale containerized applications becomes seamless and highly

efficient. By migrating to Docker, organizations can achieve cost

reductions while simultaneously enhancing team productivity, making it

a powerful choice for modern application deployment and management.

THANK YOU.

