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Abstract

Traditional VPS hosting vs. 
Docker’s container-based 
approach

Key focus:
Deployment, team productivity, 
cost efficiency, scalability

Case study:
Swoo App reduced AWS costs 
by 20% after migrating to 
Docker

Kubernetes for managing 
containers efficiently
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 Introduction to VPS and Docker

VPS (Virtual Private Server)

• A virtualized environment on 
a shared physical server

• Provides dedicated resources 
(CPU, RAM, storage)

Docker (Containerization)

• Packages applications and 
dependencies into lightweight, 
portable containers

• Runs consistently across different 
environments



Parameter VPS Docker

Isolation Full OS per server Process-level isolation

Resource Usage High (full OS) Lower (shared kernel)

Portability Limited High (runs anywhere)

Deployment Speed Slower (manual) Faster (automated)

Scalability Manual scaling Auto-scaling

Key Differences: VPS vs Docker



Boot Time, Auto Scaling and Cost Optimization

Faster Boot 
Time 

• Containers with micro or nano 
OS boot significantly faster than 
VPS or traditional VM

• Lightweight disk images allow 
containerized applications to start 
in less than one second, vs 
VPS partitions taking 3 to 10 
seconds to fully initialize

Optimized Resource 
Allocation 

• Public cloud providers (AWS, Google 
Cloud, Azure) integrate Docker and 
Kubernetes tools to scale web/mobile 
apps dynamically without 
over-provisioning hardware

• System administrators can provision 
just the right amount of hardware for 
app support, reducing costs and 
improving efficiency

Elastic Scaling 

• Disk images ensure fast 
container deployment to 
handle millions of users with 
personalized experiences



• Manual Environment Setup = TIME-CONSUMING 
and ERROR-PRONE

•

• Uses Docker Images for consistent environments
• Faster onboarding for teams
• Integrates with CI/CD pipelines for automation

Deployment and Team Productivity

Docker:

VPS:



Application Management and Scalability

• Manual scaling and load balancing
• Complex management for multiple apps

• Easier scaling with Kubernetes  and 
Docker Compose

• Centralized app management

VPS:

Docker:



Case Study – Swoo App Migration
OLD ARCHITECTURE

• 85 EC2 instances were needed for Seach, 
User, Game and Auth Service

• It was served using API Gateway Kong via 
AWS autoscaling

• CPUs and Ram of EC2 was wasted due to 
underutilization



Case Study – Swoo App Migration

● The migration of the Swoo app serves as a 
compelling case study showcasing the 
transformative impact of Docker and Kubernetes. 

● Migration to Docker and Kubernetes, reduced the 
number of EC2 instances to 67 from 85,  

● Led to significant reduction of 20% in AWS costs, 
demonstrating the efficiency and cost 
effectiveness of containerization and 
orchestration technologies.

NEW ARCHITECTURE



Orchestration Tools: Kubernetes

Benefits:

 Efficient resource allocation

Simplifies container management

Open-source platform for managing 
containerized applications

Auto-scaling and self-healing



What is more preferred: VPS or Docker?  
Key factors in decision making include 

❖ Project Management Approach

❖ Microservices Compatibility 

❖ Web Traffic Scale 

❖ Budget and Development   
Capabilities 

❖ Licensing Standards

The choice between VPS and container orchestration depends on  team workflows, 
deployment strategies, and long-term maintainability.

Both VPS and container platforms support web/mobile apps using microservices, but 
containers offer better service isolation and scalability

 The infrastructure choice is influenced by:
- Page hits per day, determining server load
- Simultaneous users, affecting real-time performance
- Server and website caching configurations for speed optimization
- Integrated CDN usage for faster content delivery

Teams must consider infrastructure costs, scaling expenses, and the complexity of 
managing the chosen solution

Open-source solutions like Docker and Kubernetes reduce vendor lock-in, while 
proprietary options may offer better enterprise support



VPS vs Docker Use Cases: Industry Adoption

Both VPS and container hosting can facilitate custom code requirements as well as distributed programming teams. Largely 
it depends on the expected or given user traffic base of a website, domain, or mobile app how much total hardware 
resources will be required to support operations in production.

Preferred by wide variety of web publishers, ecommerce websites, and multi-domain 
developers for their web hosting requirements

Preferred by corporate IT deployments in support of web/mobile applications like 
major media companies, finance/banking groups, industrial manufacturers, 
government organizations, etc. at scale in data center operations through elastic 
cluster web server networks



Best Practices for Hosting Applications

For VPS:
✔ Use configuration management tools (e.g., 
Ansible, Puppet).
✔ Monitor resource usage to avoid 
over-provisioning.

For Docker:
✔ Implement multi-stage builds to reduce 
Docker image size.
✔ Keep Docker images updated for security.
✔ Implement orchestration tools like 
Kubernetes



Best Practices for Migrating to Docker 

🚀 Assess and Refactor Microservices - ensure all microservices are container-ready and can support Docker image builds  

🔬 Start Small and Iterate - develop a small prototype before full-scale migration to identify potential issues early

🛠 Use Docker Compose for Testing - for multi-container applications, leverage Docker Compose to streamline development 
and integration testing

🔄 Integrate with CI/CD Pipelines - automate deployments with Jenkins, GitLab CI/CD, or similar tools to ensure smooth rollouts

📦 Orchestration with Kubernetes - deploy and manage containers at scale using Kubernetes for better load balancing and 
service discovery 



Best Practices for Migrating to Docker 

🎓 Train Your Team - provide hands-on Docker and Kubernetes training to ensure smooth adoption

📊 Implement Monitoring and Logging - use tools like ELK Stack, Prometheus, and Grafana for real-time performance 
monitoring and debugging 

⚡ Thoroughly Test and Load Test - conduct rigorous functional, integration, and load testing to ensure stability under 
high traffic

🌍 Migrate Gradually with a Hybrid Approach - use a phased migration strategy, running containers alongside existing 
infrastructure before full transition 



Conclusion

Docker offers superior efficiency, scalability, and automation compared 

to traditional VPS solutions. When paired with Kubernetes, managing 

large-scale containerized applications becomes seamless and highly 

efficient. By migrating to Docker, organizations can achieve cost 

reductions while simultaneously enhancing team productivity, making it 

a powerful choice for modern application deployment and management.



THANK YOU.


