LLM-Enhanced
Multimodal Al:

Revolutionizing Audio
Interaction Technologies

Conf42.com Large Language Models (LLMs) 2025

<

MULTIMODAL
MULTMODAL /7 \ 9ART (gie NTELLGRNCE 2
ARTIFICIAL \ @ el || l 3

VISION

PRESENTER:

WASEEM SYED

AR AN
(LT
Iang

The Challenges of Audio Navigation

/.

I

Content Overload: Increased volume
of podcasts, audiobooks, and
courses

Navigation Difficulties: Inefficient
search within audio

User Needs: Desire to access
relevant segments quickly

Al-Powered Solution Overview

Speaker Diarization
Who spoke and when

Topic Segmentation
Classification of topics

Multimodal Search
Text, Voice, and visual
inputs for interactive

navigation

Speaker Diarization

b

ldentifying “ spoke
e Example: “Watch segments where Jill spoke ”
Reducing Diarization Error Rate (DER)

Dynamic Speaker Profiles and Metrics

Audio Stream

Panel Introduction ‘ Inflation ‘ Mortgage ‘ Job Market
‘Imani Jill||Lawry Imani \ Lawry ‘

Speaker Classification

Lawry
Imani

Intro

0:00 e a)
10:0C Inf]at]on‘ Inflation

- I'm t Mortgage
nflation Mort 16:00 ortgage
J 20:00 ortgage ‘ 1

Job
Market

Topic Segmentation

Breaking down audio into meaningful
Using NLP techniques (Cosine Similarity, TF-IDF)
Interactive topic-based indexing

e Example: “Find all discussion on Inflation”

Job Market
24:00

Panel Introduction

9:080 ‘Lawry

Lawry [John 26:00

John|

2:00

28:00
4:00

[

E-

[Jehn| [Ji11

30:00 =

MultiModal Search Interface

-based querying

Digital Inclusion through

Al-generated contextual responses
and indexing

Example: Asking <
“What did Lawry say about Inflation?”

Al-Driven Advanced Content Indexing

DynamiC aﬂﬂOtatiOﬂS A qeeet 11: 55 Discussion on

Inflation

Related topics links

Integrated note-taking and bookmarking | & ==Y |-

on Mortgage

Structured retrieval of audio segments

Example: Indexing educational lectures
for quick navigation

User Engagement and Feedback

Ratings and comments on topics s 15

Real-time analytics for content creators

User-behavior driven content refining

System Architecture - Overview

Vs

Input Layer [Audio Input } [Video Input 1 [i Transcription ARy }
.

~

J

Pr OCCSSiI‘lg Layer [Speaker Diarization J [Topic Segmentation } [AI Models }
(&

IndeXing Layel‘ [[Store J [Retrieve } [Query Engine }}
Inter action/ [[MultiModal Search J [Engagement } [Analytics }}

Feedback Layer

Input Layer - Audio Processing

Convert raw audio into text with timestamps

Open Al Whisper

e Speech-to-text conversion
e \Word-level timestamp generation
e Language Detection

“Convert this podcast episode to text and identify timestamps for each word”

Example Code(Pseudo Code) Sample Response

def transcribe(): a
Get the audio file path from the request

data = request.get_json() "duration": 300.5,

audio_file_path = data.get('audio_file_path') : Fo - v
text": "Welcome to our podcast. Today we discuss have on the panel...",
Open the audio file

o "language": "english",
with open(audio_file_path, 'rb') as audio_file: "WOIdS"' [
Call OpenAI API to create the transcription :
transcript = client.audio.transcriptions.createl({"start": 0.5, "end": 1.2, "word": "Welcome"},
file=audio_file,
model="whisper-1, {"start": 1.3, "end": 2.0, "word": "to"},
format="verbose_json",
et raniet e {"start"s 2.1, "end": 2.5, "word": "our"},
) 1l e Handlls 1 o 1
B n— {"start": 2.6, "end": 3.5, "word": "podcast"}
return {"error": "File not found."}, 404]
except Exception as e: g
return {"error": str(e)}, 500 }

return transcript

Processing Layer - Speaker Diarization

Identify who spoke when using LLM-based diarization

Open Al Whisper + GPT4 or similar

e Uses timestamps and words from Input Layer
e Detect speaker changes based on pauses and content
e Uses LLMs to infer and assign speaker labels

“Who spoke in each segment of this podcast?”

Example Code(Pseudo Code)

import openai

Step 1: Get words & timestamps from Whisper API
whisper_transcription = get_whisper_transcription(audio_file)

Step 2: Chunk transcript based on pauses (>2 sec = speaker change)
segments = chunk_transcript(whisper_transcription["words"])

Step 3: Format transcript for LLM speaker identification
11m_prompt = format_for_llm(segments)

Step 4: Call LLM (GPT-4 Turbo) to infer speakers
def infer_speakers(prompt):
response = openai.ChatCompletion.create(
model="gpt-4-turbo",
messages=[

{"role": "system", "content": "You are an expert in speaker diarization."},

{"role": "user", "content": prompt}
1
)

return response["choices"]1[@]["message"]["content"]
speaker_diarization_result = infer_speakers(llm_prompt)

Step 5: Parse and return structured output
diarized_output = parse_llm_response(speaker_diarization_result)

Sample Response

i
[
{
"speaker": "Speaker 1",
"segments": [
4
tstart“: 0.5,
"end": 3.0,
"text": "Hello everyone Welcome to our Podcast"
},
i
"start": 10.0,
"end": 15.0,
"text": "Today we have on our panel..."
}
]
},
{
"speaker": "Speaker 2",
"segments": [
4
"start": 12.0,
"end": 19.5,
"text": "Thank you for having me...."
Iy
]
}

Processing Layer - Topic Segmentation

Identify topic boundaries and segment content into meaningful sections

NLP Techniques + LLM

Segments transcript using timestamps from Whisper API
Detects Topic Shifts in conversation

Categorizes segments based on themes

Uses LLMs to assign topic labels

“Find all sections discussing Al ethics in this podcast”

Example Algorithm(Pseudo
Code)

Chunk Transcript into Time

Intervals

Compute Text Similarity

Detect Topic Shifts

Assign Topic Labels Using LLM

Output Structured JSON

[

]

Sample Response

{"topic": "Introduction to AI", "start": @, "end": 50},
{"topic": "AI in Healthcare", "start": 51, "end": 120},
{"topic": "Ethical Challenges", "start": 121, "end": 180}

Indexing Layer - Store/Retrieve

Store and Retrieve Structured Audio Segments efficiently

Database indexing, full-text search, caching

e Stores speaker-labeled and topic-segmented data
e Fast Retrieval via topic, speaker and timestamps
e Optimized for real-time search and navigation

“Find all sections discussing Al ethics on last week’s podcast”

Indexing Layer - Store/Retrieve

Store Segments

Data(topics, speakers, start, end
etc) from Processing Layer

Create Searchable Indexes

|
e sebnio

Indexed Storage enabling faster Enable Fast Retrieval
search/indexing

Optimize Performance

Expose APIs
Search & Playback

Interaction/Feedback Layer

Enable Intuitive Search, Playback and Feedback collection

Speech Transcription Model, Real-time Analytics, Al

e Multimodal interaction(voice, text, Ul-based search)
e Real-time feedback for improved Al accuracy
e Personalized Recommendations

“What did John say about security in Al”

Interaction/Feedback Layer

User Interaction/Search

User queries, playback interactions, 1
reedback ratines
Collect Real-Time Feedback

|

Adjust A1 Model using
Feedback

Personalized search, improved Al 1
accuracy, and .enhanced Generate Personalized
recommendations Recommendations

|

Build Innovative Ul

Navigation

Summary

Passive Listening -> Interactive Experience < #
Efficient Topic and Speaker Detection @

Real-time Feedback and Continuous Improvement 54Nl
Scalable Framework ¥

Improved Accessibility ®

Conclusion

More than
have an opportunity to benefit
from the Al-powered navigation

&

Audio Source

Time Spent
Listening (%)

Streaming Music (Spotify, Pandora, Apple

Music, Amazon Music etc.) 18
Podcasts 10
YouTube Music/Music Videos 14
Audiobooks 3
AM/FM 36
Sirius XM 8
TV Music Channels 3
Owned Music (CDs, DVDs, music files -

etc.)

Other

Courtesy: Edison Research: Share of Ear(US Population 13+)

THANK YOU

