Patterns tor

ETTicient
erverless

Development

e
e SRR

) o ‘
'-(,- -

. /

- D » A
» s J. v
- ”~

W, — ﬂh’

-. l" - ‘

£ : =

* Sl " , ’

3 N " :' > v ; "

! *’-*) v » . . ;

¥ - 0L : 7
‘\'- ’s)

=

Yan Cui

@theburningmonk
http://theburningmonk.com

aws

serverless

213:{0

AWS user since 2010

http://theburningmonk.com

e
e SRR

) o ‘
'-(,- -

. /

- D » A
» s J. v
- ”~

e a8 < 2>
"‘-““;’ﬁ ‘ > <
%) i oF . 3
— , ’-* ' < I ~ g - &
& DAF 5y ‘X'?
‘\'. . ’s)
-~

Yan Cui

@theburningmonk
http://theburningmonk.com

aws

serverless

213:{0

Developer Advocate @ % lumigo

http://theburningmonk.com

e
e SRR

) o ‘
'-(,- —

. /

- D » A
s J. \
- ”~

Independent Consultant
| . i Q,Totall Mone Driver & Vehicle .
@theburningmonk Klarna. intellifio Y |Leensng " 1ovora YNAP
http://theburningmonk.com Zava JustGiving S35 Dlumigo XING’

aws D) InDebted #resolver SPARK)l tyke.o kitg SOLVF

serverless @

28 YL

training advise delivery

213:{0

http://theburningmonk.com

Efficient Serverless Development requires

Efficient Serverless Development requires

Testing

Testing

“remocal” testing for Lambda functions

Local testing E

Runs code locally
Can use debugger

Change code without deployment

4)

FAST FEEDBACK!

_ J

Test against real thing “does it work?”

Test against mocks “does It do what | expect?”

—)
—)

e ol == S ‘\,\\V \
(] i\\
. Reality!)
\ N 4
f A P

“does it work?”

Test against real thing

Test against mocks q

“does it do what | expect?”

Expectations/
Assumptions are

SNOWMEN

Limited coverage x

Prone to false positives x

LOW CONFIDENCE

Your application consists of more than just your code

Your application consists of more than just your code
Your job is to ensure all of it works

Remote testing (/\)

Test In the cloud
Realistic tests

Better coverage

~

HIGH CONFIDENCE!

J

Slow deployments x

Every change needs deploying... x

SLOW FEEDBACK...

Local testing E Remote testing (/\3

Runs code locally Test in the cloud
Can use debugger Realistic tests
Change code without deployment Better coverage
() (~)
FAST FEEDBACK! HIGH CONFIDENCE!
- _J - J

Limited coverage x Slow deployments x

Prone to false positives x Every change needs deploying... x

LOW CONFIDENCE

SLOW FEEDBACK...

REMOCAL testing

Runs code locally, talk to real AWS services
Can use debugger

Change code without deployment

Realistic tests

=g

EventBridge

API| Gateway

Cognito

AppSync

e —

_ IAM, URL path, method, etc.

———

|AM, resolver config,
~resolver template, etc.

Your application consists of more than just your code
Your job is to ensure all of it works

[]

Cognito AWS_IAM API Key Lambda authorizer

T T T

|

|AM <
Auth
Lambda
> Integration
Request . o
C s Direct service
validation . .
Integration

v

Request
transform

Domain logic
A

> Integrations

>

Response
transform

—

Cognito AWS_IAM API Key Lambda authorizer Domain logic

T T T | ‘

Alfth E2E Test

Lambda

: Response
~ Integration -

transform

Request | v

validation D.| rect ser.vme
Integration
Request

transform

—

Cognito AWS_IAM API Key Lambda authorizer Domain logic

T T T | ‘

Alfth E2E Test

Lambda

, Response
> Integration -
transform

v

Request 5 o
: : Irect service
validation . .
Integration
v
transform

E2E Test

: E2E Test E2E Test E2E Test E2E Test

Cognito AWS_IAM API Key Lambda authorizer Domain logic

T T T | ‘

ALAIth E2E Test

Lambda

, Response
> Integration -
transform

v

Request 5 o
: : Irect service
validation . .
Integration
v
transform

E2E Test

Cognito AWS_IAM API Key Lambda authorizer Domain logic

T T T | ‘

ALAIth E2E Test

Lambda

, Response
> Integration -
transform

v

Request \
: : Direct service
validation . .
Integration
v
transform

E2E Test

REMOCAL testing

AWS resources need to be provisioned x

Ephemeral environments

Deployment

Keep deployments as simple as possible

Lambda Layers

/

Container Images
\ Lambda Layers

/

Container Images
\ Lambda Layers

/

/

Custom Runtime

Container Images
\ Lambda Layers

/

I\

Provisioned Concurrency

Y N

Custom Runtime

You don’t have to use them!

DO NOT use Lambda Layers to share code

X Layers have no semantic versioning.

X Security scanning tools don't know about them and can't scan them.

X You're limited to 5 layers per function.

X They still count towards Lambda's 250mb (unzipped) size limit.

X They make it harder to test your code locally with remocal testing.

X They don't really work with static languages.

X It takes more work to publish and update a package than NPM.

X No tree-shaking and bundling

X Layers have no semantic versioning.

X Security scanning tools don't know about them and can't scan them.
X You're limited to 5 layers per function.

X They still count towards Lambda's 250mb (unzipped) size limit.

X They make it harder to test your code locally with remocal testing.

X They don't really work with static languages.

X It takes more work to publish and update a package than NPM.

X No tree-shaking and bundling

[root]

lib]

shared lib.|s

functlons] ‘
functlon -a.JS

functlon pb.Js

[—_ J : [root J : ' (root J

lib J : [functionsj [functions]
o E | ; | :
shared-lib.js ' function-a.js E ' function-b.js :
functions] ‘ { p— \ J
I:function-a.js (m‘Ot] » m
function-b.js

Prefer zip files and managed runtimes

Container Image Managed Runtime

Application

Runtime

OS

Virtualisation
Server
Storage

Network

Application
Runtime
OS
Virtualisation
Server
Storage

Network

You manage

. Platform manages

J Don’t use Lambda Layers to share code.

% Use zip files and managed runtimes.

Environments

One account per stage, minimum

Accounts

dev test staging prod

One account per team per stage for large organisations

Business critical workloads have separate accounts

Ephemeral environments

Step 1: npx sIs deploy -s dev-my-feature
(creates a new “dev-my-feature” environment)

[]

Step 1: npx sIs deploy -s dev-my-feature
(creates a new “dev-my-feature” environment)

Step 2: Make code changes, iterate, rur
remocal tests against the "dev-my-feature
environment

))

[]

Step 1: npx sIs deploy -s dev-my-feature
(creates a new “dev-my-feature” environment)

Step 2: Make code changes, iterate, rur
remocal tests against the "dev-my-feature
environment

))

Step 3: Commit code and send PR
(Cl pipeline runs all tests, etc.)

[]

Step 1: n
(creates a

Step 2: Make code changes, iterate, rur

remocal

X sls deploy -s dev-my-feature
new ‘dev-my-feature” environment)

))

tests against the "dev-my-feature

environment

Step 3: Commit code and send PR

(Cl pipeline runs all tests, etc.)

Step 4: n

OX SIS remove -S dev-my-feature

([destroys

he ephemeral environment)

[]

Step 1: n
(creates a

Step 2: Make code changes, iterate, rur

remocal

oOX sls deploy -s dev-my-feature
new ‘dev-my-feature” environment)

))

tests against the "dev-my-feature

environment

Step 3: Commit code and send PR

(Cl pipeline runs all tests, etc.)

Step 4: n

OX SIS remove -S dev-my-feature

([destroys

he ephemeral environment)

Insulated environment for development and testing

Insulated environment for development and testing
(avoids polluting shared dev/test/staging environments with test data)

No cost overhead with usage-based pricing

How to handle serverful resources when using ephemeral

environments
AWS, Serverless [February 13, 2023

I'm a big fan of using ephemeral (or temporary) environments when I'm building serverless architectures. | have
written about this practice before and | believe it's one of the most important practices that have co-evolved with

the rise of serverless technologies.

It takes advantage of the pay-per-use pricing model offered by many serverless technologies such as Lambda
and DynamoDB. You can create as many ephemeral environments as you need (resource limits permitting, of

course). There are no extra charges for having these environments.

You can create an ephemeral environment when you start working on a feature and delete it when you're done.
You can even create a fresh environment for every CI/CD run so you can test your code without worrying about

polluting your dev/test environments with dummy test data.

To make it easy to create ephemeral environments for your services, | also prefer to keep stateful (e.g. databases)

and stateless resources together. | wrote about this recently and addressed the most common counterarguments.

Using these two practices together has supercharged my development flow and | have seen these practices in

organizations of all sizes.

However.

What about serverful resources?

Few things in life are black and white, and few practices are universally “best” for everyone.

https://theburningmonk.com/2023/02/how-to-handle-serverful-resources-when-using-ephemeral-environments

ClLIVITUL TSI T

Step 3: Commit code and send PR
(Cl pipeline runs all tests, etc.)

environment !== AWS account

Accounts

dev test staging prod

dev test staging orod

Accounts

dev test staging prod

dev test staging orod

dev-yan
feature-a
feature-b

Accounts

dev test staging prod

dev—_ L ta staging prod

dev-yans”

| different stacks
feature-s&=— %

Accounts

dev test staging prod

dev___ L ta staging prod

dev-yans different CDK apps ,\

~—y ~ '
\ '
N\

feature-s&<_

Accounts

dev test staging prod

deV'ya /" Combination E 5
feature Q\/ of something
feature-b=— I

“How do | make sure resource names don’t clash?”

“How do | make sure resource names don’t clash?”

l—

#1: Don’t explicit name resources (unless you have to)

. |
. |

“How do | make sure resource names don’t clash?”

l—

#1: Don’t explicit name resources (unless you have to)

. |
. |

l—

#2: Include environment name In resource names

Works well with remocal testing

Efficient Serverless Development requires

Testing

Questions?

