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 “remocal”  testing for Lambda functions
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Local testing Remote testing



Runs code locally, talk to  real  AWS services

REMOCAL testing

Can use debugger

Change code without deployment

Realistic tests
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Cognito
API Gateway

AppSync

EventBridge

IAM, event pattern, etc.

IAM, URL path, method, etc.

IAM, resolver config, 
resolver template,  etc.



Your job is to ensure all of it works
Your application consists of more than just your code
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DEMO TIME



REMOCAL testing

AWS resources need to be provisioned

Runs code locally, talk to  real  AWS services

Can use debugger

Change code without deployment

Realistic tests



Ephemeral environments



Deployment



Keep deployments as simple as possible





Lambda Layers



Container Images
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Container Images
Lambda Layers

Custom Runtime
Provisioned Concurrency



You don’t have to use them!



DO NOT use Lambda Layers to share code
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Prefer zip files and managed runtimes



Application

Runtime

OS

Virtualisation

Server

Storage

Network

Application

Runtime

OS

Virtualisation

Server

Storage

Network

You manage

Platform manages

Container Image Managed Runtime



Don’t use Lambda Layers to share code.

Use zip files and managed runtimes.



Environments



One account per stage, minimum



Accounts

dev test staging prod



One account per team per stage for large organisations



Business critical workloads have separate accounts



Ephemeral environments



(creates a new “dev-my-feature” environment)
Step 1: npx sls deploy -s dev-my-feature
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Insulated environment for development and testing



Insulated environment for development and testing
(avoids polluting shared dev/test/staging environments with test data)



No cost overhead  with usage-based pricing



https://theburningmonk.com/2023/02/how-to-handle-serverful-resources-when-using-ephemeral-environments



Step 4: npx sls remove -s dev-my-feature
(destroys the ephemeral environment)

Step 3: Commit code and send PR
(CI pipeline runs all tests, etc.)

Step 2: Make code changes, iterate, run 
remocal tests against the “dev-my-feature” 
environment

(creates a new “dev-my-feature” environment)
Step 1: npx sls deploy -s dev-my-feature

npx sls deploy -s ci-<SHA>Step 1:
Step 2:npm run tests:all
Step 3:npx sls remove -s ci-<SHA>



environment !== AWS account
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Accounts
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testdev staging prod
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combination 
of something
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“How do I make sure resource names don’t clash?”

#1: Don’t explicit name resources (unless you have to)



#1: Don’t explicit name resources (unless you have to)

“How do I make sure resource names don’t clash?”

#2: Include environment name in resource names



Works well with remocal testing
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Questions?


