
Patterns for
Efficient
Serverless
Development

Yan Cui

http://theburningmonk.com
@theburningmonk AWS user since 2010

http://theburningmonk.com

Developer Advocate @

Yan Cui

http://theburningmonk.com
@theburningmonk

http://theburningmonk.com

Independent Consultant

advisetraining delivery

Yan Cui

http://theburningmonk.com
@theburningmonk

http://theburningmonk.com

Efficient Serverless Development requires

1. 2. 3.

Efficient Serverless Development requires

1. 2. 3.

Testing Deployment Environments

Testing

 “remocal” testing for Lambda functions

Local testing

Runs code locally

Can use debugger

Change code without deployment

FAST FEEDBACK!

Test against mocks

Test against real thing “does it work?”

“does it do what I expect?”

Expectations/
Assumptions are

sometimes wrong…

Reality!

Test against mocks

Test against real thing “does it work?”

“does it do what I expect?”

Local testing

Runs code locally

Can use debugger

Change code without deployment

Limited coverage

Prone to false positives

FAST FEEDBACK!

LOW CONFIDENCE

Your application consists of more than just your code

Your job is to ensure all of it works
Your application consists of more than just your code

Local testing

Runs code locally

Can use debugger

Change code without deployment

Limited coverage

Prone to false positives

FAST FEEDBACK!

LOW CONFIDENCE

HIGH CONFIDENCE!

Remote testing

Test in the cloud

Realistic tests

Better coverage

Local testing

Runs code locally

Can use debugger

Change code without deployment

Limited coverage

Prone to false positives

FAST FEEDBACK!

LOW CONFIDENCE

Slow deployments

Every change needs deploying…

SLOW FEEDBACK…

HIGH CONFIDENCE!

Remote testing

Test in the cloud

Realistic tests

Better coverage

Local testing

Runs code locally

Can use debugger

Change code without deployment

Limited coverage

Prone to false positives

FAST FEEDBACK!

LOW CONFIDENCE

Slow deployments

Every change needs deploying…

SLOW FEEDBACK…

HIGH CONFIDENCE!

Remote testing

Test in the cloud

Realistic tests

Better coverage

Local testing Remote testing

Runs code locally, talk to real AWS services

REMOCAL testing

Can use debugger

Change code without deployment

Realistic tests

Cognito
API Gateway

AppSync

EventBridge

Cognito
API Gateway

AppSync

EventBridge

IAM, event pattern, etc.

IAM, URL path, method, etc.

IAM, resolver config,
resolver template, etc.

Your job is to ensure all of it works
Your application consists of more than just your code

Auth

Cognito AWS_IAM API Key Lambda authorizer

Request
validation

Request
transform

Integration

Lambda

Direct service
integration

Domain logic

Integrations

Response
transform

IAM

Auth

Cognito AWS_IAM API Key Lambda authorizer

Request
validation

Request
transform

Integration

Lambda

Direct service
integration

Domain logic

Integrations

Response
transform

IAM

Unit Test

Remocal Test

E2E Test

Auth

Cognito AWS_IAM API Key Lambda authorizer

Request
validation

Request
transform

Integration

Lambda

Direct service
integration

Domain logic

Integrations

Response
transform

IAM

Unit Test

Remocal Test

E2E Test

E2E Test

E2E Test

E2E Test

E2E Test

Auth

Cognito AWS_IAM API Key Lambda authorizer

Request
validation

Request
transform

Integration

Lambda

Direct service
integration

Domain logic

Integrations

Response
transform

IAM

Unit Test

Remocal Test

E2E Test

E2E Test

E2E Test

E2E Test

E2E Test

E2E Test E2E Test E2E Test E2E Test

Auth

Cognito AWS_IAM API Key Lambda authorizer

Request
validation

Request
transform

Integration

Lambda

Direct service
integration

Domain logic

Integrations

Response
transform

IAM

Unit Test

Remocal Test

E2E Test

E2E Test

E2E Test

E2E Test

E2E Test

E2E Test E2E Test E2E Test E2E Test
Unit Test

Remocal Test

DEMO TIME

REMOCAL testing

AWS resources need to be provisioned

Runs code locally, talk to real AWS services

Can use debugger

Change code without deployment

Realistic tests

Ephemeral environments

Deployment

Keep deployments as simple as possible

Lambda Layers

Container Images
Lambda Layers

Container Images
Lambda Layers

Custom Runtime

Container Images
Lambda Layers

Custom Runtime
Provisioned Concurrency

You don’t have to use them!

DO NOT use Lambda Layers to share code

❌ Layers have no semantic versioning.

❌ Layers have no semantic versioning.

❌ Security scanning tools don't know about them and can't scan them.

❌ Layers have no semantic versioning.

❌ Security scanning tools don't know about them and can't scan them.

❌ You're limited to 5 layers per function.

❌ Layers have no semantic versioning.

❌ Security scanning tools don't know about them and can't scan them.

❌ You're limited to 5 layers per function.

❌ They still count towards Lambda's 250mb (unzipped) size limit.

❌ Layers have no semantic versioning.

❌ Security scanning tools don't know about them and can't scan them.

❌ You're limited to 5 layers per function.

❌ They still count towards Lambda's 250mb (unzipped) size limit.

❌ They make it harder to test your code locally with remocal testing.

❌ Layers have no semantic versioning.

❌ Security scanning tools don't know about them and can't scan them.

❌ You're limited to 5 layers per function.

❌ They still count towards Lambda's 250mb (unzipped) size limit.

❌ They make it harder to test your code locally with remocal testing.

❌ They don't really work with static languages.

❌ Layers have no semantic versioning.

❌ Security scanning tools don't know about them and can't scan them.

❌ You're limited to 5 layers per function.

❌ They still count towards Lambda's 250mb (unzipped) size limit.

❌ They make it harder to test your code locally with remocal testing.

❌ They don't really work with static languages.

❌ It takes more work to publish and update a package than NPM.

❌ Layers have no semantic versioning.

❌ Security scanning tools don't know about them and can't scan them.

❌ You're limited to 5 layers per function.

❌ They still count towards Lambda's 250mb (unzipped) size limit.

❌ They make it harder to test your code locally with remocal testing.

❌ They don't really work with static languages.

❌ It takes more work to publish and update a package than NPM.

❌ No tree-shaking and bundling

❌ Layers have no semantic versioning.

❌ Security scanning tools don't know about them and can't scan them.

❌ You're limited to 5 layers per function.

❌ They still count towards Lambda's 250mb (unzipped) size limit.

❌ They make it harder to test your code locally with remocal testing.

❌ They don't really work with static languages.

❌ It takes more work to publish and update a package than NPM.

❌ No tree-shaking and bundling

Prefer zip files and managed runtimes

Application

Runtime

OS

Virtualisation

Server

Storage

Network

Application

Runtime

OS

Virtualisation

Server

Storage

Network

You manage

Platform manages

Container Image Managed Runtime

Don’t use Lambda Layers to share code.

Use zip files and managed runtimes.

Environments

One account per stage, minimum

Accounts

dev test staging prod

One account per team per stage for large organisations

Business critical workloads have separate accounts

Ephemeral environments

(creates a new “dev-my-feature” environment)
Step 1: npx sls deploy -s dev-my-feature

Step 2: Make code changes, iterate, run
remocal tests against the “dev-my-feature”
environment

(creates a new “dev-my-feature” environment)
Step 1: npx sls deploy -s dev-my-feature

Step 3: Commit code and send PR
(CI pipeline runs all tests, etc.)

Step 2: Make code changes, iterate, run
remocal tests against the “dev-my-feature”
environment

(creates a new “dev-my-feature” environment)
Step 1: npx sls deploy -s dev-my-feature

Step 4: npx sls remove -s dev-my-feature
(destroys the ephemeral environment)

Step 3: Commit code and send PR
(CI pipeline runs all tests, etc.)

Step 2: Make code changes, iterate, run
remocal tests against the “dev-my-feature”
environment

(creates a new “dev-my-feature” environment)
Step 1: npx sls deploy -s dev-my-feature

Step 4: npx sls remove -s dev-my-feature
(destroys the ephemeral environment)

Step 3: Commit code and send PR
(CI pipeline runs all tests, etc.)

Step 2: Make code changes, iterate, run
remocal tests against the “dev-my-feature”
environment

(creates a new “dev-my-feature” environment)
Step 1: npx sls deploy -s dev-my-feature

Insulated environment for development and testing

Insulated environment for development and testing
(avoids polluting shared dev/test/staging environments with test data)

No cost overhead with usage-based pricing

https://theburningmonk.com/2023/02/how-to-handle-serverful-resources-when-using-ephemeral-environments

Step 4: npx sls remove -s dev-my-feature
(destroys the ephemeral environment)

Step 3: Commit code and send PR
(CI pipeline runs all tests, etc.)

Step 2: Make code changes, iterate, run
remocal tests against the “dev-my-feature”
environment

(creates a new “dev-my-feature” environment)
Step 1: npx sls deploy -s dev-my-feature

npx sls deploy -s ci-<SHA>Step 1:
Step 2:npm run tests:all
Step 3:npx sls remove -s ci-<SHA>

environment !== AWS account

Accounts

dev test staging prod

testdev staging prod

Accounts

dev test staging prod

testdev staging prod
dev-yan
feature-a
feature-b

Accounts

dev test staging prod

testdev staging prod
dev-yan
feature-a
feature-b

different stacks

Accounts

dev test staging prod

testdev staging prod
dev-yan
feature-a
feature-b

different CDK apps

Accounts

dev test staging prod

testdev staging prod
dev-yan
feature-a
feature-b

combination
of something

“How do I make sure resource names don’t clash?”

“How do I make sure resource names don’t clash?”

#1: Don’t explicit name resources (unless you have to)

#1: Don’t explicit name resources (unless you have to)

“How do I make sure resource names don’t clash?”

#2: Include environment name in resource names

Works well with remocal testing

Efficient Serverless Development requires

1. 2. 3.

Testing Deployment Environments

Questions?

